Acknowledgement
This work was supported by the National Key R&D Program of China [2020YFB1901600]; National S&T Major Project [Grant No. ZX06901]; National Natural Science Foundation of China [No.11875176]. The research is supported by Modular HTGR Supercritical Power Generation Technology collaborative project between CNNC and Tsinghua University [Project No. ZHJTJZYFGWD2020].
References
- D. Butler, Energy: nuclear power's new dawn[J], Nature 429 (6989) (2004) 238, https://doi.org/10.1038/429238a.
- Z. Zuoyi, S. Yuliang, Economic potential of modular reactor nuclear power plants based on the Chinese HTR-PM project[J], Nuclear Engineering and Design 237 (23) (2007) 2265-2274, https://doi.org/10.1016/j.nucengdes.2007.04.001.
- A.V. Rudra, D.V. Kalaga, M. Kawaji, et al., Experimental investigation of natural circulation during air-ingress scenario in a very high temperature reactor[J], Nuclear science and engineering 193 (10) (2019) 1147-1159, https://doi.org/10.1080/00295639.2019.1595311.
- S.M. Alshehri, I.A. Said, S. Usman, A review and safety aspects of modularhigh-temperature gas-cooled reactors[J], International Journal of Energy Research 45 (8) (2021) 11479-11492, https://doi.org/10.1002/er.6289.
- J.S. Kim, J. Hwang, E.S. Kim, et al., Experimental study on fundamental phenomena in HTGR small break air-ingress accident[J], Annals of Nuclear Energy 87 (2016) 145-156, https://doi.org/10.1016/j.anucene.2015.08.012.
- E.S. Kim, H.C. No, B.J. Kim, et al., Estimation of graphite density and mechanical strength variation of VHTR during air-ingress accident[J], Nuclear Engineering and Design 238 (4) (2008) 837-847, https://doi.org/10.1016/j.nucengdes.2007.08.002.
- J.D. Whittenberge, Effect of long-term 1093-K exposure to air or vacuum on the structure of several wrought superalloys[J], Journal of Materials Engineering and Performance 2 (5) (1993) 745-758, https://doi.org/10.1007/BF02650066.
- T.S. Jo, S. Kim, D. Kim, et al., Thermal degradation behavior of inconel 617 alloy [J], Metals and Materials International 14 (6) (2008) 739-743, https://doi.org/10.3365/met.mat.2008.12.739.
- C. Jang, D. Lee, D. Kim, Oxidation behaviour of an Alloy 617 in very high-temperature air and helium environments[J], International Journal of Pressure Vessels and Piping 85 (6) (2008) 368-377, https://doi.org/10.1016/j.ijpvp.2007.11.010.
- D. Kim, C. Jang, W.S. Ryu, Oxidation characteristics and oxide layer evolution of alloy 617 and haynes 230 at 900 ℃ and 1100 C[J], Oxidation of Metals 71 (5-6) (2009) 271-293, https://doi.org/10.1007/s11085-009-9142-5.
- G. Lee, S. Jung, J. Park, et al., Microstructural investigation of alloy 617 creep-ruptured at high temperature in a helium environment[J], Journal of Materials Science & Technology 29 (12) (2013) 1177-1183, https://doi.org/10.1016/j.jmst.2013.09.024.
- W.J. Quadakkers, Corrosion of High Temperature Alloys in the Primary Circuit Helium of High Temperature Gas Cooled Reactors-Part I_ Theoretical Background[J]. Materials and Corrosion, 1985, https://doi.org/10.1002/maco.19850360402.
- P.S. Shankar, K. Natesan, Effect of trace impurities in helium on the creep behavior of Alloy 617 for very high temperature reactor applications[J], Journal of Nuclear Materials 366 (1-2) (2007) 28-36, https://doi.org/10.1016/j.jnucmat.2006.12.028.
- F. Rouillard, C. Cabet, K. Wolski, et al., High temperature corrosion of a nickel base alloy by helium impurities[J], Journal of Nuclear Materials 362 (2-3) (2007) 248-252, https://doi.org/10.1016/j.jnucmat.2007.01.049.
- J. Chapovaloff, F. Rouillard, P. Combrade, et al., Assessing the kinetics of high temperature oxidation of Inconel 617 in a dedicated HTR impure helium facility coupling thermogravimetry and gas phase chromatography[J], Journal of Nuclear Materials 441 (1-3) (2013) 293-300, https://doi.org/10.1016/j.jnucmat.2013.06.012.
- P. Yvon, K. Natesan, S.A. Maloy, et al., Overview of Reactor Systems and Operational Environments for Structural Materials in Gen-IV Fission Reactors, 2019 [M].
- A.U. Seybolt, Oxidation of metals[J], Advances in Physics 12 (45) (1963) 1-43, https://doi.org/10.1080/00018736300101253.
- D. Saber, I.S. Emam, R. Abdel-Karim, High temperature cyclic oxidation of Ni based superalloys at different temperatures in air[J], Journal of Alloys and Compounds 719 (2017) 133-141, https://doi.org/10.1016/j.jallcom.2017.05.130.
- C.J. Tsai, High Temperature Oxidation Behavior of Nickel and Iron Based Superalloys in Helium Containing Trace Impurities[J], CORROSION SCIENCE AND TECHNOLOGY, 2019, https://doi.org/10.14773/cst.2019.18.1.8.
- D. Kumar, R.R. Adharapurapu, T.M. Pollock, et al., High-temperature oxidation of alloy 617 in helium containing part-per-million levels of CO and CO2 as impurities[J], Metallurgical and materials transactions. A, Physical metallurgy and materials science 42 (5) (2011) 1245-1265, https://doi.org/10.1007/s11661-011-0603-5.
- L.W. Graham, Corrosion of metallic materials in HTR-helium environments[J], Journal of Nuclear Materials 171 (1) (1990) 76e83, https://doi.org/10.1016/0022-3115(90)90350-V.
- T. Abe, Y. Chen, A. Saengdeejimg, et al., Computational phase diagrams for the Nd-based magnets based on the combined ab initio/CALPHAD approach[J], Scripta Materialia 154 (2018) 305-310, https://doi.org/10.1016/j.scriptamat.2018.01.030.
- W.C. Hagel, A.U. Seybolt, Cation Diffusion in Cr2O3[J] 108 (12) (1961) 1146-1152, https://doi.org/10.1149/1.2427973, 1961.
- J. Guo, Materials Science and Engineering for superalloys[M], Materials science and engineering for superalloys, 2010.
- Z. Yang, J. Lu, Z. Yang, et al., Oxidation behavior of a new wrought Ni-30Fe-20Cr based alloy at 750 ℃ in pure steam and the effects of alloyed yttrium [J], Corrosion Science 125 (2017) 106-113, https://doi.org/10.1016/j.corsci.2017.06.009.
- D. Li, J. Chen, I.P. Etim, et al., High temperature oxidation behavior of Ni-based superalloy Nimonic95 and the effect of pre-oxidation treatment[J], Vacuum 194 (2021), 110582, https://doi.org/10.1016/j.vacuum.2021.110582.
- M.W. Chase, NIST-JANAF Thermochemical Tables, fourth ed., 1998 [J].
- D. Kim, I. Sah, C. Jang, Effects of aging in high temperature helium environments on room temperature tensile properties of nickel-base superalloys[J], Materials Science and Engineering: A. 528 (3) (2011) 1713-1720, https://doi.org/10.1016/j.msea.2010.10.104.
- D. Kim, I. Sah, C. Jang, Effects of high temperature aging in an impure helium environment on low temperature embrittlement of Alloy 617 and Haynes 230 [J], Journal of Nuclear Materials 405 (1) (2010) 9-16, https://doi.org/10.1016/j.jnucmat.2010.07.026.
- T. Yeh, H. Chang, M. Wang, et al., Corrosion of Alloy 617 in high-temperature gas environments[J], Nuclear Engineering and Design 271 (2014) 257-261, https://doi.org/10.1016/j.nucengdes.2013.11.045.