DOI QR코드

DOI QR Code

A multi-criteria decision-making process for selecting decontamination methods for radioactively contaminated metal components

  • Inhye Hahm (Decommissioning Technology Research Division, Korea Atomic Energy Research Institute) ;
  • Daehyun Kim (Department of Decommissioning Regulation, Korea Institute of Nuclear Safety) ;
  • Ho jin Ryu (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Sungyeol Choi (Department of Nuclear Engineering, Seoul National University)
  • Received : 2022.03.03
  • Accepted : 2022.09.09
  • Published : 2023.01.25

Abstract

Various decontamination technologies have been developed for removing contaminated areas in industries. Although it is important to consider parameters such as safety, cost, and time when selecting the decontamination technology, till date their comparative study is missing. Furthermore, different decontamination technologies influence the decontamination effects in different ways. Therefore, this study compares different decontamination techniques for the steam generator using a multicriteria decision-making method. A steam generator is a large device comprising both low- and very low-level waste (LLW, VLLW) and reflects the difference in weights of the standards according to the classification of the waste. For LLW and VLLW decontaminations, chemical oxidizing reduction decontamination (CORD) and decontamination grit blasting were used as the preferred techniques, respectively, considering the purpose of decontamination differs based on the initial state of waste. An expert survey revealed that safety in LLW and waste minimization in VLLW exhibited high preference. This evaluation method can be applied not only to the comparison between each process, but also to the creation of process scenarios. Therefore, determining the decontamination approach using logical decision-making methods may improve the safety and economic feasibility of each step in the decommissioning process and ensure a public acceptance.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Science and ICT (NRF-2020M2C9A1068162).

References

  1. G. Barariu, R. Georgescu, F. Sociu, C. Bilbie, C. Bucur, The optimization of decontamination methods selected for contaminated areas used in decommissioning of CANDUn6 NPP, J. Energy Power Eng. 4 (2010). 
  2. O. Kaya, K.D. Alemdar, M.Y. Codur, A novel two stage approach for electric taxis charging station site selection, Sustain. Cities Soc. 62 (2020), 102396, https://doi.org/10.1016/j.scs.2020.102396. 
  3. C. Achillas, C. Vlachokostas, N. Moussiopoulos, G. Perkoulidis, G. Banias, M. Mastropavlos, Electronic waste management cost: a scenario-based analysis for Greece, Waste Manag. Res. 29 (2011) 963-972, https://doi.org/10.1177/0734242X10389104. 
  4. M. Bertolini, M. Braglia, G. Carmignani, Application of the AHP methodology in making a proposal for a public work contract, Int. J. Proj. Manag. 24 (2006) 422-430, https://doi.org/10.1016/j.ijproman.2006.01.005. 
  5. K.D. Alemdar, O. Kaya, M.Y. Codur, A GIS and microsimulation-based MCDA approach for evaluation of pedestrian crossings, Accid. Anal. Prev. 148 (2020), https://doi.org/10.1016/j.aap.2020.105771. 
  6. Y.J. Zhang, Z.R. Huang, F.Y. Zhao, Y. Wang, Mathematical modeling and evaluation of the safety culture for the operating nuclear power plants in China: critical review and multi-criteria decision analysis, Ann. Nucl. Energy 168 (2022), 108871, https://doi.org/10.1016/J.ANUCENE.2021.108871. 
  7. I. Erol, S. Sencer, A. Ozmen, C. Searcy, Fuzzy MCDM framework for locating a nuclear power plant in Turkey, Energy Policy 67 (2014) 186-197, https://doi.org/10.1016/J.ENPOL.2013.11.056. 
  8. R. Gao, H.O. Nam, W. Il Ko, H. Jang, National options for a sustainable nuclear energy system: MCDM evaluation using an improved integrated weighting approach, Energies 10 (2017), https://doi.org/10.3390/en10122017. 
  9. M.A. Ebadian, J.F. Boudreaux, S. Chinta, S.H. Zanakis, Decision Analysis System for Selection of Appropriate Decontamination Technologies, Federal Energy Technology Center Morgantown (FETC-MGN), Morgantown, WV, 1998. 
  10. G. Dottavio, M.F. Andrade, F. Renard, V. Cheutet, A.-L. Ladier, S. Vercraene, P. Hoang, S. Briet, R. Dachicourt, Logistical optimization of nuclear waste flows during decommissioning, 8th Int. Conf. Energy Manag. 10 (2016) 968-973. 
  11. J.S. Song, S.S. Shin, S.H. Lee, A study on the application of EXPERT-CHOICE technique for selection of optimal decontamination technology for nuclear power plant of decommissioning, J. Nucl. Fuel Cycle Waste Technol. 15 (2017) 231-237, https://doi.org/10.7733/jnfcwt.2017.15.3.231. 
  12. K.S. Jeong, S.K. Park, I.H. Hahm, J.H. Ha, S.J. Min, S.B. Hong, B.K. Seo, B. Lee, D.H. Kim, J.H. Kim, S.Y. Jeong, S.M. Ahn, J.J. Lee, B.S. Lee, Approach to optimization of risk assessment based on an evaluation matrix for decommissioning processes of a nuclear facility, Ann. Nucl. Energy 128 (2019) 53-62, https://doi.org/10.1016/J.ANUCENE.2018.12.049. 
  13. S.J. K, S. ha B, Sang Don Park, The enhancement strategy on national cyber capability using hybrid methodology of AHP and TOPSIS, Korea converg, Secur. Assoc. 15 (2015) 43-55. 
  14. T.L. Saaty, A scaling method for priorities in hierarchical structures, J. Math. Psychol. 15 (1977) 234-281, https://doi.org/10.1016/0022-2496(77)90033-5. 
  15. C.-L. Hwang, K. Yoon, Methods for multiple attribute decision making, in: Mult. Attrib. Decis. Mak. Methods Appl. A State-Of-The-Art Surv., Springer Berlin Heidelberg, Berlin, Heidelberg, 1981, pp. 58-191, https://doi.org/10.1007/978-3-642-48318-9_3. 
  16. J.-P. Brans, Y. De Smet, PROMETHEE methods, in: S. Greco, M. Ehrgott, J.R. Figueira (Eds.), Mult. Criteria Decis. Anal. State Art Surv., Springer, New York, New York, NY, 2016, pp. 187-219, https://doi.org/10.1007/978-1-4939-3094-4_6. 
  17. A. Guitouni, J.M. Martel, Tentative guidelines to help choosing an appropriate MCDA method, Eur. J. Oper. Res. 109 (1998) 501-521, https://doi.org/10.1016/S0377-2217(98)00073-3. 
  18. J.P. Brans, P. Vincke, A preference ranking organisation method: (the PROMETHEE method for multiple criteria decision-making), Manage. Sci. 31 (1985) 647-656. http://www.jstor.org/stable/2631441. 
  19. J.S. Song, M.Y. Jung, S. Lee, A study on the applicability for primary system decontamination through analysis on NPP decommission technology and international experience, J. Nucl. Fuel Cycle Waste Technol. 14 (2016) 45-55.  https://doi.org/10.7733/jnfcwt.2016.14.1.45
  20. M. Walberg, J. Viermann, M. Beverungen, L. Kemp, A. Lindstrom, G.N.S. Gesellschaft, K.S. Gmbh, B. Chaussee, Disposal of steam generators from decommissioning of PWR nuclear power plants, IYNC (2008), No.158, 2008. 
  21. H.D. Mathieu Ponnet, Michel Klein, Vincent Massaut, B.N. SCK.CEN, Thorough Chemical Decontamination with the MEDOC Process: Batch Treatment of Dismantled Pieces or Loop Treatment of Large Components Such as the BR3 Steam Generator and Pressurizer Thorough Chemical Decontamination with the MEDOC Process: Batch Treatment, 2003, pp. 1-9. 
  22. A. Lindstrom, B. Wirendal, M. Lindberg, NEW TREATMENT CONCEPT FOR STEAM GENERATORS- TECHNICAL ASPECTS, Waset Manag., 2007. 
  23. C. Topf, Full system decontamination (FSD) with the CORD ® family prior to decommissioning-experiences at the German NPP obrigheim 2007, Iync (2008) 20-26. 
  24. L.S. Belda, Decontamination in preparation for dismantlement - AREVA's chemical decontamination technologies, projects performed and results obtained in the period 2011-2016, in: Curr. Emerg. Methods Optimising Saf. Effic. Nucl. Decommissioning, 2017. 
  25. IAEA, Decommissioning of Nuclear Facilities: Decontamination, Disassembly and Waste Management, 1983, p. 94. http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/15/018/15018658.pdf. 
  26. B. Krause G. Amcoff, J. Robinson, Options for Steam Generator Decommissioning, vol. 10, 2016, pp. 103-106. 
  27. G.N. Kim, M.W. Lee, H.M. Park, W.K. Choi, K.W. Lee, Abrasive blasting technology for decontamination of the inner surface of steam generator tubes, Nucl. Eng. Technol. 43 (2011) 469-476, https://doi.org/10.5516/net.2011.43.5.469. 
  28. OECD/NEA, Decontamination and Dismantling of Radioactive Concrete Structures A Report of the NEA Co-operative Programme on Decommissioning (CPD) Decontamination and Dismantling of Radioactive Concrete Structures, 2011. 
  29. M. Ponnet, Metal decontamination techniques used in decommissioning activities, in: Eur. Nucl. Decommissioning Train, Facil., 2002. 
  30. Petri Kinnunen, ANTIOXI-decontamination Techniques for Activity Removal in Nuclear Environments, 2008, p. 58. https://www.vtt.fi/inf/julkaisut/muut/2008/VTT-R-00299-08.pdf. 
  31. T. Yoon, S. Kim, J. Kim, J. Kim, S. Lee, Analysis on the Current Status of Chemical Decontamination Technology of Steam Generators in the Oversea Nuclear Power Plants, NPPs), 2015, pp. 29-31. 
  32. EPRI, Decontamination of Reactor Systems and Contaminated Components for Disposal or Refurbishment Developments and Experience with the EPRI DFD Chemical Decontaminati O N Process, 2001. 
  33. EPRI, Review of Plant Decontamination Methods: 1988 Update, 1989. 
  34. E. Babilas, B. Brendebach, Selection and evaluation of decontamination and dismantling techniques for decommissioning of large NPPs components, Prog. Nucl. Energy 84 (2015) 108-115, https://doi.org/10.1016/J.PNUCENE.2014.09.005. 
  35. IAEA, Selection of Decommissioning Strategies: Issues and Factors. Report by an Expert Group, 2005. IAEA-TECDOC-1478. 
  36. EPA, Technology Reference Guide for Radiologically Contaminated Surfaces, 2006. 
  37. ACS Committee on Chemical Safety, Identifying and Evaluating Hazards in Research Laboratories, 2015. https://www.acs.org/content/dam/acsorg/about/ governance/committees/chemicalsafety/publications/identifying-andevaluating-hazards-in-research-laboratories.pdf. 
  38. KAERI, Study on the State-Of-The Arts Approaches and Methodologies for the Decommissioning Cost Estimation of Nuclear Facilities, 2004. 
  39. Y.S. Hwang, C.H. Kang, S.G. Kim, H.S. Park, Progress of radioactive waste management in Korea, Prog. Nucl. Energy 42 (2003) 159-177, https://doi.org/10.1016/S0149-1970(03)80007-0. 
  40. MOTIE, RADIOACTIVE WASTE MANAGEMENT ACT, 2017. 
  41. A. Lindstrom, B. Wirendal, M. Lindberg, New treatment concept for steam generators technical aspects, in: Waste Manag. Symp. Conf. Sess., 2007, pp. 3-24. 
  42. M.G. Carmichael, S. Aldini, R. Khonasty, A. Tran, C. Reeks, D. Liu, K.J. Waldron, G. Dissanayake, The ANBOT: an intelligent robotic Co-worker for industrial abrasive blasting, in: 2019 IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2019, pp. 8026-8033, https://doi.org/10.1109/IROS40897.2019.8967993. 
  43. G.R. Hoenes, M.A. Mueller, W.D. Mccormack, Radiological Assessment of Steam Generator Removal and Replacement : Update and Revision National Technical Informati on Service, 1980. https://digital.library.unt.edu/ark:/67531/metadc835289/. 
  44. J. Moon, S. Kim, C. Wangkyu, B. Choi, D. Chung, B. Seo, The status and prospect of decommissioning technology development at KAERI, J. Nucl. Fuel Cycle Waste Technol. 17 (2019) 139-165, https://doi.org/10.7733/jnfcwt.2019.17.2.139. 
  45. L. AITAMMAR, Chooz-A steam generators characterization, in: PREDEC 2016 Chooz-A Steam Gener. Charact., n.d. 
  46. SCK.CEN, THE DECOMMISSIONING OF THE BR3 STEAM GENERATOR, 2005. 
  47. M. Klein, M. Rahier, R. Mandoki, Ponnet, Comparison of Thorough Decontamination Techniques on Dismantled Pieces of a PWR Reactor, A, IAEA, 1998. 
  48. OECD/NEA, Decontamination Techniques Used in Decommissioning Activities, 1999. 
  49. S. Liu, Y. He, H. Xie, Y. Ge, Y. Lin, Z. Yao, M. Jin, J. Liu, X. Chen, Y. Sun, B. Wang, A state-of-the-art review of radioactive decontamination technologies: facing the upcoming wave of s. https://doi.org/10.3390/su14074021, 2022, 14. 
  50. Y.J. Son, S.J. Park, J. Byon, S. Ahn, The assessment and reduction plan of radiation exposure during decommissioning of the steam generator in Kori unit 1, J. Nucl. Fuel Cycle Waste Technol. 16 (2018) 377-387, https://doi.org/10.7733/jnfcwt.2018.16.3.377.