DOI QR코드

DOI QR Code

Laser decontamination for radioactive contaminated metal surface: A review

  • Qian Wang (Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University) ;
  • Feisen Wang (Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University) ;
  • Chuang Cai (Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University) ;
  • Hui Chen (Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University) ;
  • Fei Ji (Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University) ;
  • Chen Yong (AVIC Chengdu Aircraft Industrial (Group) Co., Ltd.) ;
  • Dasong Liao (Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University)
  • 투고 : 2022.04.15
  • 심사 : 2022.09.21
  • 발행 : 2023.01.25

초록

With the improvement of laser technology, the strategic needs of efficient and precise decontamination of various components in nuclear application units can be fulfilled by laser decontamination. The surface contaminants of nuclear facilities mainly exist both as loose contaminated layer and fixed oxide layer. The types of radionuclides and contamination layer thickness are closely related to the operation status of nuclear facilities, which have an important influence on the laser decontamination process. This study reviewed the mechanism of laser surface treatment and the influence of laser process parameters on the decontamination thickness, decontamination factor, decontamination efficiency and the distribution of aerosol particle. Although multiple studies have been performed on the mechanism of laser processing and laser decontamination process, there are few studies on the microscopic process mechanism of laser decontamination and the influence of laser decontamination on surface properties. In particular, the interaction between laser and radioactive contaminants needs more research in the future.

키워드

과제정보

This work was supported by the Sichuan Province Science and Technology Program of China (No.2020ZDZX0002, No.2020JDRC0047 and No.2019JDRC0130).

참고문헌

  1. Z.H.E.N.G. Gong, Jiahao Wang, Xiang Gao, et al., Preliminary study and selection of CFETR in-vessel component tritium dust decontamination method in hot cell, Fusion Eng. Des. (155) (2020), 111705.
  2. Nuclear Energy Agency, R & D and Innovation Needs for Decommissioning Nuclear Facilities, 2014.
  3. Nuclear Energy Agency Nuclear decommissioning, Decontamination Techniques Used in Decommissioning Activities: A Report by the NEA Task Group on Decontamination, 2009.
  4. V.S. Sathyaseelan, A.L. Rufus, H. Subramanian, et al., High temperature dissolution of oxides incomplexing media, J. Nucl. Mater. 419 (1-3) (2011) 39-45. https://doi.org/10.1016/j.jnucmat.2011.08.034
  5. Bin Liu, Xinmin Li, Lijun Song, et al., Chemical decontamination of primary loop Elbow and verification test in nuclear power plant, J. Nucl. Radiochem. 40 (6) (2018) 388-392.
  6. V.S. Sathyaseelan, H. Subramanian, P. Chandramohan, Evaluation of elevated temperature process for the decontamination of stainless steel 304LN surface, Nucl. Mater. Energy 25 (2020), 100874.
  7. L.I. Ye, Yu Sun, Dong Zhang, et al., Decontamination research of ventilation pipes by dry ice jet, Atomic Energy Sci. Technol. 46 (2012) 164-167.
  8. T. Sanders, M. Gallagher, T. Choularton, The characterisation and removal of water droplets in high pressure water jetting nuclear decontamination (16036), in: Waste Management Conference 2016, Phoenix, Arizona, USA, 2016, pp. 1-19.
  9. D.V. Voronin, V.L. Istomin, K.A. Khlebus, Experimental study of blown-abrasive decontamination of the inner surfaces of pipelines for a pulsed pneumatic conveyor model, At. Energy 113 (2013) 332-336. https://doi.org/10.1007/s10512-013-9641-y
  10. Y. Liu, Y. Chen, Y.R. Kong, R.Z. Li, P. Nie, Y.D. Zhou, A study on decontamination technology of ultrasonic wave cerium(IV), Radiat. Prot. 37 (2017) 39-44.
  11. H.Q. Wang, E.M. Hu, Q.L. Wang, S. Jin, Y. Liu, K. Chen, J.M. Hu, Y.H. Zhou, Experimental study on decontamination of the surface radioactivity of uranium mining equipment by the synergy of ultrasonic and chemical methods, J. Univ. South China Science Technol. 33 (2019) 1-5.
  12. B. Heshmatpour, G.L. Copeland, R.L. Heestand, Decontamination of transuranic contaminated metals by melt refining 4, 1983, pp. 129-134 (2). https://doi.org/10.1016/0191-815X(83)90002-5
  13. A.Q. Chen, Melting decontamination and recycling of radioactive polluted metals from uranium mining and metallurgy, Uranium Min. Metall. 30 (2011) 95-99.
  14. M.Q. Si, J.J. Zhang, J.Q. Ren, C.H. Lu, Thermal plasma decontamination of graphite surface, Nucl. Tech. 43 (2020) 89-93.
  15. P. Chandramohan, M.P. Srinivasan, S. Velmurugan, Development of chemical decontamination process based on ozone for system surfaces with chromium containing oxides, Nucl. Technol. 200 (2017) 269-277. https://doi.org/10.1080/00295450.2017.1371561
  16. I.H. Yoon, S.B. Yoon, Y. Sihn, M.S. Choi, C.H. Jung, W.K. Choi, Stabilizing decontamination foam using surface-modified silica nanoparticles containing chemical reagent: foam stability, structures, and dispersion properties, RSC Adv. 11 (2021) 1841-1849. https://doi.org/10.1039/D0RA07644A
  17. Z.H. Liu, Y.X. Wang, T.G. Zhang, F.L. Song, Investigation on safety of gel decontamination technology, At. Energy Sci. Technol. 48 (2014) 944-948.
  18. H.M. Yang, C.W. Park, K.W. Lee, Polymeric coatings for surface decontamination and ecofriendly volume reduction of radioactive waste after use, Prog. Nucl. Energy 104 (2018) 67-74. https://doi.org/10.1016/j.pnucene.2017.09.002
  19. W.S. Choi, S.H. Cho, Y.J. Lee, Y.S. Kim, J.H. Lee, Separation behavior of nickel and cobalt in a LiCl-KCl-NiCl2 molten salt by electrorefining process, J. Electroanal. Chem. 866 (2020).
  20. T. Andreas, S. Thomas, L. Jens, Fiber lasers and amplifiers: an ultrafast performance evolution, Optical Soc. America 49 (25) (2010) 71-78.
  21. S. Sinha, Thermal model for nanosecond laser ablation of alumina, Ceram. Int. 41 (2015) 6596-6603. https://doi.org/10.1016/j.ceramint.2015.01.106
  22. X.X. Li, Y.C. Guan, Theoretical fundamentals of short pulse laser-metal interaction: a review, Nanotechnol. Precision Eng. 3 (2020) 105-125. https://doi.org/10.1016/j.npe.2020.08.001
  23. A. Kumar, J.P. Nilaya, D.J. Biswas, CO2 laser assisted removal of UO2 and ThO2 particulates from metal surface, Appl. Surf. Sci. 257 (2011) 7263-7267. https://doi.org/10.1016/j.apsusc.2011.03.102
  24. G. Greifzu, T. Kahl, M. Herrmann, et al., Laser-based decontamination of metal surface, Opt Laser. Technol. 117 (2019) 293-298. https://doi.org/10.1016/j.optlastec.2019.04.037
  25. L.S. Marc, D. Philippe, M. Wiadimir, et al., Excimer laser decontamination, Int. Conf. Atomic Mol. Pulsed Lasers 4071 (2000) 196-208.
  26. Y.C. Lin, Y.Y. Lin, Y.H. Huang, et al., A compact and portable laser radioactive decontamination system using passive Q-switched fiber laser and polygon scanner, Appl. Radiat. Isot. 153 (2019), 108835.
  27. H.J. Won, J.K. Moon, C.H. Jung, Decontamination of radioactive material by Nd: YAG laser, Asian J. Chem. 25 (10) (2013) 5819-5822. https://doi.org/10.14233/ajchem.2013.OH99
  28. Meihua Ma, Zhixing Gao, Xiuzhang Tang, et al., Laser decontamination research on radioactive simulation specimens in air, J. Nucl. Radiochem. 39 (1) (2017) 69-71.
  29. B. Rethfeld, D.S. Ivanov, M.E. Garcia, S.I. Anisimov, Modelling ultrafast laser ablation, J. Phys. D: Appl. Phys. 50 (2017), 193001.
  30. N. Farid, S.S. Harilal, H. Ding, A. Hassanein, Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures, J. Appl. Phys. 115 (2014), 033107.
  31. D.H. Lister, G. Venkateswaran, N. Arbeau, The kinetics of 60Co uptake on and release from stainless steel with and without 65Zn addition under boiling water reactor conditions, Nucl. Technol. (140) (2002) 288-302.
  32. Z. Homonnay, E. Kuzmann, K. Varga, Comprehensive investigation of the corrosion state of the heat exchanger tubes of steam generators. Part II. Chemical composition and structure of tube surfaces, J. Nucl. Mater. 348 (2006) 191-204. https://doi.org/10.1016/j.jnucmat.2005.09.013
  33. Zhixing Gao, Xiuzhang Tang, Meihua Ma, Zhentao Zhang, Experimental simulation of radioactive decontamination with Excimer laser, Proc. SPIE (2013) 8786.
  34. J. Robertson, The mechanism of high temperature aqueous corrosion of stainless steels, Corrosion Sci. 32 (4) (1991) 443-465. https://doi.org/10.1016/0010-938X(91)90125-9
  35. J. Robertson, The mechanism of high temperature aqueous corrosion of steel, Corrosion Sci. 29 (11) (1989) 1275-1989. https://doi.org/10.1016/0010-938X(89)90120-0
  36. Q. Wang, H. Chen, F.S. Wang, S.F. Ai, D.S. Liao, T. Wen, Laser decontamination microscopic process study on radioactive contaminations with Cs+ ion of 304 stainless steel surface, Appl. Radiat. Isot. 182 (2022), 110112.
  37. L. Carvalho, W. Pacquentin, M. Tabarant, et al., Growth of micrometric oxide layers to explore laser decontamination of metallic surfaces, EPJ Nucl. Sci. Technol. 3 (30) (2017).
  38. Carvalho L, Pacquentin W, Tabarant M, et al. Development of laser cleaning for metallic equipment. London: Proceedings of the 2018 26th International Conference on Nuclear Engineering.
  39. L. Carvalho, W. Pacquentin, M. Tabarant, et al., Metal decontamination by high repetition rate nanosecond fiber laser: application to oxidized and Eu-contaminated stainless steel, Appl. Surf. Sci. 526 (2020), 146654.
  40. J.K. Moon, B. Baigalma, H.J. Won, et al., Decontamination characteristics of 304 stainless steel surfaces by a Q-switched Nd: YAG laser at 532 nm, J. Korean Radioactive Waste Soc. 8 (3) (2010) 181-188.
  41. H.J. Won, B. Baigalma, J.K. Moon, et al., A comparative study on the laser removal of Cs+ ion from type 304 stainless steel, Kor. J. Chem. Eng. 27 (6) (2010) 1780-1785. https://doi.org/10.1007/s11814-010-0408-z
  42. B. Baigalmaa, H.J. Won, J.K. Moon, et al., A comprehensive study on the laser decontamination of surfaces contaminated with Cs+ ion, Appl. Radiat. Isot. 67 (7-8) (2009) 1526-1529. https://doi.org/10.1016/j.apradiso.2009.02.055
  43. H.J. Won, J.K. Moon, C.H. Jung, Decontamination of radioactive material by Nd: YAG laser, Asian J. Chem. 25 (10) (2013) 5819-5822. https://doi.org/10.14233/ajchem.2013.OH99
  44. A. Kumar, T. Prakash, M. Prasad, et al., Laser assisted removal of fixed radioactive contamination from metallic substrate, Nucl. Eng. Des. 320 (2017) 183-186. https://doi.org/10.1016/j.nucengdes.2017.06.003
  45. P. Delaporte, M. Gastaud, W. Marine, et al., Radioactive oxide removal by XeCl laser, Appl. Surf. Sci. 197 (1) (2002) 826-830. https://doi.org/10.1016/S0169-4332(02)00456-7
  46. M.L. Sentis, P. Delaporte, W. Marine, et al., Surface oxide removal by a XeCl laser for decontamination, Quant. Electron. 30 (6) (2000) 495-500. https://doi.org/10.1070/QE2000v030n06ABEH001750
  47. V.P. Veiko, E.A. Shakhno, Laser Cleaning //Physical Mechanisms of Laser Cleaning 7 (2002) 311e340.
  48. V.P. Veiko, T.Y. Mutin, V.N. Smirnov, et al., Laser decontamination of radioactive nuclides polluted surfaces, Laser Phys. 21 (2011) 608-613. https://doi.org/10.1134/S1054660X11050264
  49. D.E. Roberts, T.S. Modise, Laser removal of loose uranium compound contamination from metal surfaces, Appl. Surf. Sci. 253 (2007) 5258-5267. https://doi.org/10.1016/j.apsusc.2006.11.050
  50. A. Kumar, D.J. Biswas, Particulate size and shape effects in laser cleaning of heavy metal oxide loose contamination off clad surface, Opt Laser. Technol. 106 (2018) 286-293. https://doi.org/10.1016/j.optlastec.2018.04.027
  51. A. Kumar, R.B. Bhatt, M. Afzal, et al., Laser-Assisted decontamination of fuel pins for prototype fast breeder reactor, Nucl. Technol. 182 (2013) 241-247. https://doi.org/10.13182/NT13-A16434
  52. M. Mosbacher, H.J. Munzer, J. Zimmermann, et al., Optical field enhancement effects in laser assisted particle removal, Appl. Phys. A 72 (2001) 41-44. https://doi.org/10.1007/s003390000715
  53. J.P. Nilaya, D.J. Biswas, Laser Assisted Decontamination of Metal Surface: Evidence of Increased Surface Absorptivity Due to Field Enhancement Caused by Transparent/semi-Transparent Contaminant Particulates, vol. 256, 2010, pp. 1867-1870. https://doi.org/10.1016/j.apsusc.2009.10.021
  54. J.P. Nilaya, R. Pallavi, A. Kumar, Laser-assisted decontamination-A wavelength dependent study, Appl. Surf. Sci. 254 (22) (2008) 7377-7380. https://doi.org/10.1016/j.apsusc.2008.05.348
  55. Y. Kameo, M. Nakashima, T. Hirabayashi, Removal of metal-oxide layers formed on stainless and carbon steel surfaces by excimer laser irradiation in various atmospheres, Nucl. Technol. 137 (2) (2002) 139-146. https://doi.org/10.13182/NT02-A3263
  56. Enhou Han, Jianqiau Wang, Xinqiang Wu, et al., Corrosion mechanisms of stainless steel and nickel base alloys in high temperature high pressure water, Acta Metall. Sin. 46 (11) (2010) 1379-1390. https://doi.org/10.3724/SP.J.1037.2010.01379
  57. E. Chikarakara, S. Naher, D. Brabazon, Analysis of microstructural changes during pulsed CO2 laser surface processing of AISI 316L stainless steel, Adv. Mater. Res. 264-265 (2009) 1404-1408.
  58. D. Hipp, A. Mahrle, E. Beyer, Beyond Fresnel: absorption of fibre laser radiation on rough stainless steel surfaces, J. Phys. Appl. Phys. 52 (35) (2019), 355302.
  59. J.R. Ho, C.P. Grigoropoulos, J.A.C. Humphrey, Computational study of heat transfer and gas dynamics in the pulsed laser evaporation of metals, J. Appl. Phys. 78 (1995) 4696-4709. https://doi.org/10.1063/1.359817
  60. A. Semerok, C. Chaleard, V. Detalle, J.L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, SalleB, P. Palianov, M. Perdrix, G. Petite, Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses, Appl. Surf. Sci. 138e139 (1999) 311-314. https://doi.org/10.1016/S0169-4332(98)00411-5
  61. B.L. Drogoff, F. Vidal, S. Laville, M. Chaker, T. Johnston, O. Barthelemy, J. Margot, M. Sabsabi, Laser-ablated volume and depth as a function of pulse duration in aluminum targets, Appl. Opt. 44 (2005) 278-281. https://doi.org/10.1364/AO.44.000278
  62. Guoxing Chen, Haifeng Lu, Ying Zhao, Effect of power on laser cleaning result of stainless steel surface, Opto-Electronic Eng. 44 (12) (2017) 1217-1224.
  63. Y.Q. Tong, Study on Mechanism and Application Fundamentals of Laser Removal of Metal Oxides, Jiangsu University, Jiangsu, 2014.
  64. M. Stafe, Theoretical photo-thermo-hydrodynamic approach to the laser ablation of metals, J. Appl. Phys. 112 (2012).
  65. D. Autrique, G. Clair, D. L'Hermite, et al., The role of mass removal mechanisms in the onset of ns-laser induced plasma formation, J. Appl. Phys. 114 (2013).
  66. W. Pacquentina, N. Carona, R. Oltra, Effect of microstructure and chemical composition on localized corrosion resistance of a AISI 304L stainless steel after nano pulsed-laser surface melting, Appl. Surf. Sci. 356 (2015) 561-573. https://doi.org/10.1016/j.apsusc.2015.08.015
  67. W. Pacquentina, N. Carona, R. Oltra, Nanosecond laser surface modification of AISI 304L stainless steel: influence the beam overlap on pitting corrosion resistance, Appl. Surf. Sci. 288 (2014) 34-39. https://doi.org/10.1016/j.apsusc.2013.09.086
  68. D.P. Adams, V.C. Hodges, D.A. Hirschfeld, et al., Nanosecond pulsed laser irradiation of stainless steel 304L: oxide growth and effects on underlying metal, Surf. Coating. Technol. 222 (2013) 1-8. https://doi.org/10.1016/j.surfcoat.2012.12.044
  69. Q. Wang, F.S. Wang, C. Cai, H. Chen, F. Ji, T. Wen, The essential role of the microstructure and composition in the corrosion resistance of laser-decontaminated surfaces, Opt Laser. Technol. 152 (2011), 108111.
  70. J. Koch, M. W€ alle, J. Pisonero, et al., Performance characteristics of ultraviolet femtosecond laser ablation inductively coupled plasma mass spectrometry at 265 and 200 nm, J. Anal. At. Spectrom. 21 (2006) 932-940. https://doi.org/10.1039/B603929D
  71. R.E. Russo, X.L. Mao, O.V. Borisov, et al., Influence of wavelength on fractionation in laser ablation ICP-MS, J. Anal. At. Spectrom. 9 (2000) 1115-1120. https://doi.org/10.1039/b004243i
  72. V. Mozna, J. Pisonero, M. Hola, et al., Quantitative analysis of Fe-based samples using ultraviolet nanosecond and femtosecond laser ablation ICPMS, J. Anal. At. Spectrom. 21 (2006) 1194-1201. https://doi.org/10.1039/B606988F
  73. N.J. Seatveit, S.J. Bajic, D.P. Baldwin, et al., Influence of particle size on fractionation with nanosecond and femtosecond laser ablation in brass by online differential mobility analysis and inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom. 23 (2008) 54-61. https://doi.org/10.1039/B709995A
  74. J. Gonzales, S.H. Dundas, C.Y. Liu, et al., UV-femtosecond and nanosecond laser ablation-ICP-MS: internal and external repeatability, J. Anal. At. Spectrom. 21 (2006) 778-784. https://doi.org/10.1039/B603492F
  75. C.C. Garcia, H. Lindner, A. Bohlen von, et al., Elemental fractionation and stoichiometric sampling in femtosecond laser ablation, J. Anal. At. Spectrom. 19 (2008) 470-478. https://doi.org/10.1039/b718845e
  76. J.H. Yoo, O.V. Borisov, X. Mao, et al., Existence of phase explosion during laser ablation and its effects on inductively coupled plasma-mass spectroscopy, Anal. Chem. 73 (2001) 2288-2293. https://doi.org/10.1021/ac001333h
  77. M. Cheng, D.W. Lee, B. Gu, Investigation of Nanoparticle Formation during Surface Decontamination and Characterization by Pulsed Laser, vol. 943, American Chemical Society, Washington, 2006, pp. 240-249.
  78. M. Hola, V. Konecna, P. Mikusk, et al., Influence of physical properties and chemical composition of sample on formation of aerosol particles generated by nanosecond laser ablation at 213 nm, Spectrochim. Acta B Atom Spectrosc. 65 (2010) 51-60. https://doi.org/10.1016/j.sab.2009.11.003
  79. J. Heitz, E. Arenholz, J.T. Dickinson, Particles in laser ablation of polytetrafluorethylene, Appl. Phys. A 69 (1999) 467-470. https://doi.org/10.1007/s003390051035
  80. S.K. Friedlander, K. Ogawa, M. Ullmann, Elastic behavior of nanoparticle chain aggregates: a hypothesis for polymer-filler behavior, J. Polym. Sci. B Polym. Phys. 38 (20) (2015) 2658-2665.
  81. K. Ogawa, T. Vogt, M. Ullmann, et al., Elastic properties of nanoparticle chain aggregates of TiO2, Al2O3, and Fe2O3 generated by laser ablation, J. Appl. Phys. 87 (2002) 63-73.
  82. M. Ullmann, S.K. Friedlander, A. Schmidt-Ott, Nanoparticle formation by laser ablation, J. Nanoparticle Res. 4 (2002) 499-509. https://doi.org/10.1023/A:1022840924336
  83. C.H. Jung, H.S. Park, H.J. Won, et al., Size distribution and filtration property of particles generated from laser ablation decontamination process, Environ. Prog. Sustain. Energy 32 (3) (2013) 649-654. https://doi.org/10.1002/ep.11679
  84. D.W. Lee, M.D. Cheng, Particle generation by ultraviolet-laser ablation during surface decontamination, J. Air Waste Manag. Assoc. 56 (2006) 1591-1598. https://doi.org/10.1080/10473289.2006.10464555
  85. F. Vidal, T.W. Johnston, S. Laville, et al., Critical-point phase separation in laser ablation of conductors, Phys. Rev. Lett. 86 (12) (2001) 2573.
  86. A. Miotello, R. Kelly, Critical assessment of thermal models for laser sputtering at high fluences, Appl. Phys. Lett. 67 (1995) 3535.
  87. M.E. Povarnitsyn, T.E. Itina, K.V. Khishchenko, et al., Suppression of ablation in femtosecond double-pulse experiments, Phys. Rev. Lett. 103 (2009), 15002.
  88. C. Wu, L.V. Zhigilei, Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations, Appl. Phys. 114 (11) (2014).
  89. J.L. Laurent, P. Danny, Laser ablation with short and ultrashort laser pulses: basic mechanisms from molecular-dynamics simulations, Appl. Surf. Sci. 255 (2009) 5101-5106. https://doi.org/10.1016/j.apsusc.2008.07.116
  90. N.M. Bulgakova, A.V. Bulgakov, Pulsed laser ablation of solids: transition from normal vaporization to phase explosion, Appl. Phys. 73 (199) (2000).
  91. J. Han, Y. Li, Q. Zhang, et al., Phase explosion induced by high-repetition rate pulsed laser, Appl. Surf. Sci. 256 (22) (2010) 6649-6654. https://doi.org/10.1016/j.apsusc.2010.04.064
  92. R.K. Ganesh, A. Faghri, A generation thermal modeling for laser drilling process-I: mathematical modeling and numerical methodology, Int. J. Heat Mass Tran. 40 (14) (1997) 3351-3360. https://doi.org/10.1016/S0017-9310(96)00368-7
  93. L.V. Zhigilei, Z. Lin, D.S. Ivanov, Atomistic modeling of short pulse laser ablation of metals: connections between melting spallation, and phase explosion, J. Phys. Chem. C 113 (2009) 11892-11906. https://doi.org/10.1021/jp902294m
  94. I. Apitz, A. Vogel, Material ejection in nanosecond Er: YAG laser ablation of water, liver, and skin, Appl. Phys. A 81 (2) (2005) 329-338. https://doi.org/10.1007/s00339-005-3213-5
  95. V.M. Allmen, Laser drilling velocity in metals, J. Appl. Phys. 47 (1976) 5460-5463. https://doi.org/10.1063/1.322578
  96. R. Fabbro, Physical Mechanisms Controlling Keyhole and Melt Pool Dynamics during Laser Welding, Woodhead Publishing Limited, 2010, pp. 211-241.
  97. J.J. Yang, Y.B. Zhao, N. Zhang, et al., Ablation of metallic targets by high-intensity ultrafast laser pulses, Phys. Rev. B 76 (16) (2007), 165430.
  98. A. Ben-Yakar, R.L. Byer, A. Harkin, et al., Morphology of femtosecond-laser-ablated borosilicate glass surfaces, Appl. Phys. Lett. 83 (15) (2003) 3030-3032. https://doi.org/10.1063/1.1619560
  99. Clark-MXR Inc, Machining with Long Pulse Lasers, 2011 http://www.cmxr.com/Education/Long.html.
  100. C.H. Shin, L. Jehnming, Removal mechanisms of micro-scale particles by surface wave in laser cleaning, Opt Laser. Technol. 38 (2006) 544-551. https://doi.org/10.1016/j.optlastec.2004.11.021
  101. R.A. Bowling, A theoretical review of particle adhesion, Particl. Surface 1 (1988) 129-142. https://doi.org/10.1007/978-1-4615-9531-1_10