DOI QR코드

DOI QR Code

Repeated irradiation by light-emitting diodes may impede the spontaneous progression of experimental periodontitis: a preclinical study

  • Hyemee Suh (Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Jungwon Lee (Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Sun-Hee Ahn (Medical & Bio Photonics Research Center, Korea Photonics Technology Institute (KOPTI)) ;
  • Woosub Song (Medical & Bio Photonics Research Center, Korea Photonics Technology Institute (KOPTI)) ;
  • Ling Li (Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Yong-Moo Lee (Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Yang-Jo Seol (Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Ki-Tae Koo (Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University)
  • Received : 2022.04.27
  • Accepted : 2022.08.30
  • Published : 2023.04.30

Abstract

Purpose: We investigated whether repeated irradiation with light-emitting diodes (LEDs) at a combination of 470 nm and 525 nm could suppress the progression of experimental periodontitis. Methods: A experimental periodontitis model was established in the second, third, and fourth premolars of the mandible in beagle dogs for 2 months. The spontaneous progression of periodontitis was monitored under the specified treatment regimen for 3 months. During this period, the animals were subjected to treatments of either plaque control only (control) or plaque control with LED application (test) at 2-week intervals. The clinical parameters included the probing pocket depth (PPD), gingival recession (GR), and the clinical attachment level (CAL). Histomorphometric analysis was performed using measurements of the length of the junctional epithelium, connective tissue (CT) zone, and total soft tissue (ST). Results: There were significant differences in PPD between the control and test groups at baseline and 12 weeks. When the change in PPD was stratified based on time intervals, it was shown that greater differences occurred in the test group, with statistical significance for baseline to 12 weeks, 6 to 12 weeks, and baseline to 6 weeks. There was no significant difference in GR between the control and test groups at any time points. Likewise, no statistically significant differences were found in GR at any time intervals. CAL showed a statistically significant difference between the control and test groups at baseline only, although significant differences in CAL were observed between baseline and 12 weeks and between 6 and 12 weeks. The proportion of CT to ST was smaller for both buccal and lingual areas in the control group than in the test group. Conclusions: Repeated LED irradiation with a combination of 470-nm and 525-nm wavelengths may help suppress the progression of periodontal disease.

Keywords

Acknowledgement

This work was supported by the Development of Advanced Technology for Electronic Systems Program - Optical Convergence for Human Care Technology Development Project (20010763, development of an oral care device with an LED standard light source for oral health improvement) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

References

  1. Yucel-Lindberg T, Bage T. Inflammatory mediators in the pathogenesis of periodontitis. Expert Rev Mol Med 2013;15:e7. 
  2. Hajishengallis G, Lamont RJ. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol 2012;27:409-19. https://doi.org/10.1111/j.2041-1014.2012.00663.x
  3. Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers 2017;3:17038. 
  4. Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine DH, et al. Periodontitis: consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Periodontol 2018;89 Suppl 1:S173-82.  https://doi.org/10.1002/JPER.17-0721
  5. Graziani F, Karapetsa D, Alonso B, Herrera D. Nonsurgical and surgical treatment of periodontitis: How many options for one disease? Periodontol 2000 2017;75:152-88.  https://doi.org/10.1111/prd.12201
  6. Grzech-Lesniak K, Gaspirc B, Sculean A. Clinical and microbiological effects of multiple applications of antibacterial photodynamic therapy in periodontal maintenance patients. A randomized controlled clinical study. Photodiagnosis Photodyn Ther 2019;27:44-50.  https://doi.org/10.1016/j.pdpdt.2019.05.028
  7. Laleman I, Cortellini S, De Winter S, Rodriguez Herrero E, Dekeyser C, Quirynen M, et al. Subgingival debridement: end point, methods and how often? Periodontol 2000 2017;75:189-204.  https://doi.org/10.1111/prd.12204
  8. Yoshinari N, Kawase H, Mitani A, Ito M, Sugiishi S, Matsuoka M, et al. Effects of scaling and root planing on the amounts of interleukin-1 and interleukin-1 receptor antagonist and the mRNA expression of interleukin-1β in gingival crevicular fluid and gingival tissues. J Periodontal Res 2004;39:158-67.  https://doi.org/10.1111/j.1600-0765.2004.00722.x
  9. Matuliene G, Pjetursson BE, Salvi GE, Schmidlin K, Bragger U, Zwahlen M, et al. Influence of residual pockets on progression of periodontitis and tooth loss: results after 11 years of maintenance. J Clin Periodontol 2008;35:685-95.  https://doi.org/10.1111/j.1600-051X.2008.01245.x
  10. Costa FO, Cota LO. Cumulative smoking exposure and cessation associated with the recurrence of periodontitis in periodontal maintenance therapy: a 6-year follow-up. J Periodontol 2019;90:856-65.  https://doi.org/10.1002/JPER.18-0635
  11. Sbordone L, Ramaglia L, Gulletta E, Iacono V. Recolonization of the subgingival microflora after scaling and root planing in human periodontitis. J Periodontol 1990;61:579-84.  https://doi.org/10.1902/jop.1990.61.9.579
  12. Komerik N, Nakanishi H, MacRobert AJ, Henderson B, Speight P, Wilson M. In vivo killing of Porphyromonas gingivalis by toluidine blue-mediated photosensitization in an animal model. Antimicrob Agents Chemother 2003;47:932-40.  https://doi.org/10.1128/AAC.47.3.932-940.2003
  13. Luan XL, Qin YL, Bi LJ, Hu CY, Zhang ZG, Lin J, et al. Histological evaluation of the safety of toluidine blue-mediated photosensitization to periodontal tissues in mice. Lasers Med Sci 2009;24:162-6.  https://doi.org/10.1007/s10103-007-0513-3
  14. Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn Ther 2004;1:279-93.  https://doi.org/10.1016/S1572-1000(05)00007-4
  15. Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part two-cellular signaling, cell metabolism and modes of cell death. Photodiagnosis Photodyn Ther 2005;2:1-23.  https://doi.org/10.1016/S1572-1000(05)00030-X
  16. Fukui M, Yoshioka M, Satomura K, Nakanishi H, Nagayama M. Specific-wavelength visible light irradiation inhibits bacterial growth of Porphyromonas gingivalis. J Periodontal Res 2008;43:174-8.  https://doi.org/10.1111/j.1600-0765.2007.01009.x
  17. Soukos NS, Som S, Abernethy AD, Ruggiero K, Dunham J, Lee C, et al. Phototargeting oral blackpigmented bacteria. Antimicrob Agents Chemother 2005;49:1391-6.  https://doi.org/10.1128/AAC.49.4.1391-1396.2005
  18. Song HH, Lee JK, Um HS, Chang BS, Lee SY, Lee MK. Phototoxic effect of blue light on the planktonic and biofilm state of anaerobic periodontal pathogens. J Periodontal Implant Sci 2013;43:72-8.  https://doi.org/10.5051/jpis.2013.43.2.72
  19. Lee H, Kim YG, Um HS, Chang BS, Lee SY, Lee JK. Efficacy of an LED toothbrush on a Porphyromonas gingivalis biofilm on a sandblasted and acid-etched titanium surface: an in vitro study. J Periodontal Implant Sci 2018;48:164-73.  https://doi.org/10.5051/jpis.2018.48.3.164
  20. Mester E, Mester AF, Mester A. The biomedical effects of laser application. Lasers Surg Med 1985;5:31-9. https://doi.org/10.1002/lsm.1900050105
  21. Wang Y, Huang YY, Wang Y, Lyu P, Hamblin MR. Photobiomodulation (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: role of intracellular calcium and lightgated ion channels. Sci Rep 2016;6:33719. 
  22. Wang Y, Huang YY, Wang Y, Lyu P, Hamblin MR. Photobiomodulation of human adipose-derived stem cells using 810nm and 980nm lasers operates via different mechanisms of action. Biochim Biophys Acta, Gen Subj 2017;1861:441-9.  https://doi.org/10.1016/j.bbagen.2016.10.008
  23. Heiskanen V, Hamblin MR. Photobiomodulation: lasers vs. light emitting diodes? Photochem Photobiol Sci 2018;17:1003-17.  https://doi.org/10.1039/c8pp00176f
  24. de Sousa AP, Santos JN, Dos Reis JA Jr, Ramos TA, de Souza J, Cangussu MC, et al. Effect of LED phototherapy of three distinct wavelengths on fibroblasts on wound healing: a histological study in a rodent model. Photomed Laser Surg 2010;28:547-52.  https://doi.org/10.1089/pho.2009.2605
  25. Dungel P, Hartinger J, Chaudary S, Slezak P, Hofmann A, Hausner T, et al. Low level light therapy by LED of different wavelength induces angiogenesis and improves ischemic wound healing. Lasers Surg Med 2014;46:773-80.  https://doi.org/10.1002/lsm.22299
  26. Cheon MW, Kim TG, Lee YS, Kim SH. Low level light therapy by Red-Green-Blue LEDs improves healing in an excision model of Sprague-Dawley rats. Pers Ubiquitous Comput 2013;17:1421-8.  https://doi.org/10.1007/s00779-012-0577-3
  27. Lee J, Song HY, Ahn SH, Song W, Seol YJ, Lee YM, Koo KTIn vitro investigation of the antibacterial and anti-inflammatory effects of LED irradiation. J Periodontal Implant Sci 2022;52:e34. 
  28. Schwarz F, Jepsen S, Herten M, Aoki A, Sculean A, Becker J. Immunohistochemical characterization of periodontal wound healing following nonsurgical treatment with fluorescence controlled Er:YAG laser radiation in dogs. Lasers Surg Med 2007;39:428-40.  https://doi.org/10.1002/lsm.20509
  29. Percie du Sert N, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol 2020;18:e3000411. 
  30. Bureau International des Poids et Mesures (BIPM). The international system of units ('The SI Brochure'), 8th ed [Internet]. Saint-Cloud: BIPM; 2006 [cited 2022 Jul 31]. Available from: http://www.bipm.org/en/si/si_brochure/.
  31. Chen S, Tang L, Xu M, Chen T, Zhao S, Liu M, et al. Light-emitting-diode-based antimicrobial photodynamic therapies in the treatment of periodontitis. Photodermatol Photoimmunol Photomed 2022;38:311-21.  https://doi.org/10.1111/phpp.12759
  32. Soukos NS, Wilson M, Burns T, Speight PM. Photodynamic effects of toluidine blue on human oral keratinocytes and fibroblasts and Streptococcus sanguis evaluated in vitro. Lasers Surg Med 1996;18:253-9.  https://doi.org/10.1002/(SICI)1096-9101(1996)18:3<253::AID-LSM6>3.0.CO;2-R
  33. Komerik N, Curnow A, MacRobert AJ, Hopper C, Speight PM, Wilson M. Fluorescence biodistribution and photosensitising activity of toluidine blue o on rat buccal mucosa. Lasers Med Sci 2002;17:86-92.  https://doi.org/10.1007/s101030200015
  34. Demidova TN, Hamblin MR. Effect of cell-photosensitizer binding and cell density on microbial photoinactivation. Antimicrob Agents Chemother 2005;49:2329-35.  https://doi.org/10.1128/AAC.49.6.2329-2335.2005
  35. Lipovsky A, Nitzan Y, Gedanken A, Lubart R. Visible light-induced killing of bacteria as a function of wavelength: implication for wound healing. Lasers Surg Med 2010;42:467-72.  https://doi.org/10.1002/lsm.20948
  36. Mohl M, Dombovari A, Tuchina ES, Petrov PO, Bibikova OA, Skovorodkin I, et al. Titania nanofibers in gypsum composites: an antibacterial and cytotoxicology study. J Mater Chem B Mater Biol Med 2014;2:1307-16.  https://doi.org/10.1039/c3tb21644f
  37. Moro MG, de Carvalho VF, Godoy-Miranda BA, Kassa CT, Horliana AC, Prates RA. Efficacy of antimicrobial photodynamic therapy (aPDT) for nonsurgical treatment of periodontal disease: a systematic review. Lasers Med Sci 2021;36:1573-90. https://doi.org/10.1007/s10103-020-03238-1
  38. Bosshardt DD. The periodontal pocket: pathogenesis, histopathology and consequences. Periodontol 2000 2018;76:43-50.  https://doi.org/10.1111/prd.12153
  39. Kreisler M, Christoffers AB, Al-Haj H, Willershausen B, d'Hoedt B. Low level 809-nm diode laser-induced in vitro stimulation of the proliferation of human gingival fibroblasts. Lasers Surg Med 2002;30:365-9.  https://doi.org/10.1002/lsm.10060
  40. Choe R, Balhaddad AA, Fisher JP, Melo MA, Huang HC. Photodynamic therapy for biomodulation and disinfection in implant dentistry: Is it feasible and effective? Photochem Photobiol 2021;97:916-29. https://doi.org/10.1111/php.13434