DOI QR코드

DOI QR Code

In vitro investigation of the antibacterial and anti-inflammatory effects of LED irradiation

  • Jungwon Lee (Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Hyun-Yong Song (Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Sun-Hee Ahn (Medical & Bio Photonics Research Center, Korea Photonics Technology Institute (KOPTI)) ;
  • Woosub Song (Medical & Bio Photonics Research Center, Korea Photonics Technology Institute (KOPTI)) ;
  • Yang-Jo Seol (Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Yong-Moo Lee (Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Ki-Tae Koo (Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University)
  • Received : 2022.02.12
  • Accepted : 2022.04.04
  • Published : 2023.04.30

Abstract

Purpose: This study aimed to investigate the proper wavelengths for safe levels of light-emitting diode (LED) irradiation with bactericidal and photobiomodulation effects in vitro. Methods: Cell viability tests of fibroblasts and osteoblasts after LED irradiation at 470, 525, 590, 630, and 850 nm were performed using the thiazolyl blue tetrazolium bromide assay. The bactericidal effect of 470-nm LED irradiation was analyzed with Streptococcus gordonii, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Porphyromonas gingivalis, and Tannerella forsythia. Levels of nitric oxide, a proinflammatory mediator, were measured to identify the anti-inflammatory effect of LED irradiation on lipopolysaccharide-stimulated inflammation in RAW 264.7 macrophages. Results: LED irradiation at wavelengths of 470, 525, 590, 630, and 850 nm showed no cytotoxic effect on fibroblasts and osteoblasts. LED irradiation at 630 and 850 nm led to fibroblast proliferation compared to no LED irradiation. LED irradiation at 470 nm resulted in bactericidal effects on S. gordonii, A. actinomycetemcomitans, F. nucleatum, P. gingivalis, and T. forsythia. Lipopolysaccharide (LPS)-induced RAW 264.7 inflammation was reduced by irradiation with 525-nm LED before LPS treatment and irradiation with 630-nm LED after LPS treatment; however, the effects were limited. Conclusions: LED irradiation at 470 nm showed bactericidal effects, while LED irradiation at 525 and 630 nm showed preventive and treatment effects on LPS-induced RAW 264.7 inflammation. The application of LED irradiation has potential as an adjuvant in periodontal therapy, although further investigations should be performed in vivo.

Keywords

Acknowledgement

This work was supported by the Development of Advanced Technology for Electronic Systems Program - Optical Convergence for Human Care Technology Development Project (20010763, Development of oral care device with LED standard light source for oral health improvement) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

References

  1. O'Leary TJ. The impact of research on scaling and root planing. J Periodontol 1986;57:69-75. https://doi.org/10.1902/jop.1986.57.2.69
  2. Haffajee AD, Cugini MA, Dibart S, Smith C, Kent RL Jr, Socransky SS. The effect of SRP on the clinical and microbiological parameters of periodontal diseases. J Clin Periodontol 1997;24:324-34. https://doi.org/10.1111/j.1600-051X.1997.tb00765.x
  3. Badersten A, Nilveus R, Egelberg J. Effect of nonsurgical periodontal therapy. I. Moderately advanced periodontitis. J Clin Periodontol 1981;8:57-72. https://doi.org/10.1111/j.1600-051X.1981.tb02024.x
  4. Aoki A, Sasaki KM, Watanabe H, Ishikawa I. Lasers in nonsurgical periodontal therapy. Periodontol 2000 2004;36:59-97. https://doi.org/10.1111/j.1600-0757.2004.03679.x
  5. Kikuchi T, Mogi M, Okabe I, Okada K, Goto H, Sasaki Y, et al. Adjunctive application of antimicrobial photodynamic therapy in nonsurgical periodontal treatment: a review of literature. Int J Mol Sci 2015;16:24111-26. https://doi.org/10.3390/ijms161024111
  6. Martin-Cabezas R, Davideau JL, Tenenbaum H, Huck O. Clinical efficacy of probiotics as an adjunctive therapy to non-surgical periodontal treatment of chronic periodontitis: a systematic review and meta-analysis. J Clin Periodontol 2016;43:520-30. https://doi.org/10.1111/jcpe.12545
  7. Donos N, Calciolari E, Brusselaers N, Goldoni M, Bostanci N, Belibasakis GN. The adjunctive use of host modulators in non-surgical periodontal therapy. A systematic review of randomized, placebo-controlled clinical studies. J Clin Periodontol 2020;47 Suppl 22:199-238. https://doi.org/10.1111/jcpe.13232
  8. Zhang Z, Zheng Y, Bian X. Clinical effect of azithromycin as an adjunct to non-surgical treatment of chronic periodontitis: a meta-analysis of randomized controlled clinical trials. J Periodontal Res 2016;51:275-83. https://doi.org/10.1111/jre.12319
  9. Khattri S, Kumbargere Nagraj S, Arora A, Eachempati P, Kusum CK, Bhat KG, et al. Adjunctive systemic antimicrobials for the non-surgical treatment of periodontitis. Cochrane Database Syst Rev 2020;11:CD012568.
  10. Tan OL, Safii SH, Razali M. Clinical efficacy of repeated applications of local drug delivery and adjunctive agents in nonsurgical periodontal therapy: a systematic review. Antibiotics (Basel) 2021;10:1178.
  11. Etemadi A, Sadatmansouri S, Sodeif F, Jalalishirazi F, Chiniforush N. Photobiomodulation effect of different diode wavelengths on the proliferation of human gingival fibroblast cells. Photochem Photobiol 2021;97:1123-8. https://doi.org/10.1111/php.13463
  12. Misischia WP, Xenoudi P, Yukna RA, Schurr MJ. Bacterial reduction effect of four different dental lasers on titanium surfaces in vitro. Lasers Med Sci 2021;36:1759-67. https://doi.org/10.1007/s10103-021-03349-3
  13. Guffey JS, Wilborn J. In vitro bactericidal effects of 405-nm and 470-nm blue light. Photomed Laser Surg 2006;24:684-8. https://doi.org/10.1089/pho.2006.24.684
  14. Kim S, Kim J, Lim W, Jeon S, Kim O, Koh JT, et al. In vitro bactericidal effects of 625, 525, and 425 nm wavelength (red, green, and blue) light-emitting diode irradiation. Photomed Laser Surg 2013;31:554-62. https://doi.org/10.1089/pho.2012.3343
  15. Chaweewannakorn C, Santiwong P, Surarit R, Sritanaudomchai H, Chintavalakorn R. The effect of LED photobiomodulation on the proliferation and osteoblastic differentiation of periodontal ligament stem cells: in vitro. J World Fed Orthod 2021;10:79-85. https://doi.org/10.1016/j.ejwf.2021.03.003
  16. Giannelli M, Lasagni M, Bani D. Photonic therapy in periodontal diseases an overview with appraisal of the literature and reasoned treatment recommendations. Int J Mol Sci 2019;20:4741.
  17. Avci P, Gupta A, Sadasivam M, Vecchio D, Pam Z, Pam N, et al. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg 2013;32:41-52.
  18. Heiskanen V, Hamblin MR. Photobiomodulation: lasers vs. light emitting diodes? Photochem Photobiol Sci 2018;17:1003-17. https://doi.org/10.1039/c8pp00176f
  19. Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in inflammatory diseases. Inflammopharmacology 2007;15:252-9. https://doi.org/10.1007/s10787-007-0013-x
  20. Lev-Tov H, Brody N, Siegel D, Jagdeo J. Inhibition of fibroblast proliferation in vitro using low-level infrared light-emitting diodes. Dermatol Surg 2013;39:422-5. https://doi.org/10.1111/dsu.12087
  21. Lev-Tov H, Mamalis A, Brody N, Siegel D, Jagdeo J. Inhibition of fibroblast proliferation in vitro using red light-emitting diodes. Dermatol Surg 2013;39:1167-70. https://doi.org/10.1111/dsu.12212
  22. Vinck EM, Cagnie BJ, Cornelissen MJ, Declercq HA, Cambier DC. Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation. Lasers Med Sci 2003;18:95-9. https://doi.org/10.1007/s10103-003-0262-x
  23. Chotikasemsri P. Phototherapy and LED treatment optimization on gum fibroblast and osteoblast cell line. In: Proceedings of the 6th 2013 Biomedical Engineering International Conference; 2013 October 23-25; Amphur Muang. : Piscataway: Institute of Electrical and Electronics Engineers; 2013.
  24. Na S, TruongVo T, Jiang F, Joll JE, Guo Y, Utreja A. Dose analysis of photobiomodulation therapy on osteoblast, osteoclast, and osteocyte. J Biomed Opt 2018;23:1-8. https://doi.org/10.1117/1.JBO.23.7.075008
  25. Fukui M, Yoshioka M, Satomura K, Nakanishi H, Nagayama M. Specific-wavelength visible light irradiation inhibits bacterial growth of Porphyromonas gingivalis. J Periodontal Res 2008;43:174-8. https://doi.org/10.1111/j.1600-0765.2007.01009.x
  26. Song HH, Lee JK, Um HS, Chang BS, Lee SY, Lee MK. Phototoxic effect of blue light on the planktonic and biofilm state of anaerobic periodontal pathogens. J Periodontal Implant Sci 2013;43:72-8. https://doi.org/10.5051/jpis.2013.43.2.72
  27. Oyim J, Omolo CA, Amuhaya EK. Photodynamic antimicrobial chemotherapy: advancements in porphyrin-based photosensitize development. Front Chem 2021;9:635344.
  28. Soukos NS, Som S, Abernethy AD, Ruggiero K, Dunham J, Lee C, et al. Phototargeting oral black-pigmented bacteria. Antimicrob Agents Chemother 2005;49:1391-6. https://doi.org/10.1128/AAC.49.4.1391-1396.2005
  29. Ghate VS, Ng KS, Zhou W, Yang H, Khoo GH, Yoon WB, et al. Antibacterial effect of light emitting diodes of visible wavelengths on selected foodborne pathogens at different illumination temperatures. Int J Food Microbiol 2013;166:399-406. https://doi.org/10.1016/j.ijfoodmicro.2013.07.018