DOI QR코드

DOI QR Code

Effect of microencapsulation of egg yolk immunoglobulin Y by sodium alginate/chitosan/sodium alginate on the growth performance, serum parameters, and intestinal health of broiler chickens

  • Yuanming Jin (Department of Animal Science, Yanbian University) ;
  • Haojie Lv (Department of Animal Science, Yanbian University) ;
  • Mingzhu Wang (Department of Animal Science, Yanbian University) ;
  • Chong-Su Cho (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Jongsuh Shin (Department of Animal Life Sciences, Kangwon National University) ;
  • Lianhua Cui (Department of Animal Science, Yanbian University) ;
  • Changguo Yan (Department of Animal Science, Yanbian University)
  • Received : 2022.10.31
  • Accepted : 2023.02.10
  • Published : 2023.08.01

Abstract

Objective: Egg yolk immunoglobulin (IgY) is an antibiotic alternative to prevent and fight intestinal pathogenic infections. This study aimed to investigate the effects of sodium alginate/chitosan/sodium alginate IgY microcapsules on the growth performance, serum parameters, and intestinal health of broiler chickens. Methods: One-day-old broilers (Ross 308) were divided into five treatments, each with 10 replicates of five chickens. The dietary treatments were maintained for 28 days and consisted of a basal diet (NC), basal diet + 500 mg chlortetracycline/kg diet (CH), basal diet + 50 mg non-microencapsulated IgY/kg diet (NM), basal diet + 600 mg low levels microencapsulated IgY/kg diet (LM), and basal diet + 700 mg high levels microencapsulated IgY/kg diet (HM). Results: Throughout the 28-day trial period, the NM, LM, HM, and CH groups increased average daily gain compared with the NC group (p<0.05), and the HM group reduced feed conversion ratio compared with the CH group (p<0.05). The LM and HM groups increased relative organ weights of thymus and spleen compared with the CH and NM groups (p<0.05). The HM group improved the duodenal, jejunal and ileum villi height (VH) and villus height to crypt depth ratio (VH:CD) compared with the CH and NM groups (p<0.05). Compared with the CH group, the HM group increased serum immunoglobulin (IgA), immunoglobulin G (IgG), superoxide dismutase, total antioxidant capacity, and glutathione peroxidase levels (p<0.05), and decreased serum malondialdehyde levels (p<0.05). Compared with the NC group, the NM, LM, HM, and CH groups reduced colonic Escherichia coli and Salmonella levels (p<0.05). and the HM group promoted the levels of lactic acid bacteria and bifidobacteria compared with the CH group (p<0.05). Conclusion: Microencapsulation could be considered as a way to improve the efficiency of IgY. The 700 mg high levels microencapsulated IgY/kg diet could potentially be used as an alternative to antibiotics to improve the immune performance and intestinal health, leading to better performance of broiler chickens.

Keywords

Acknowledgement

Authors extend thanks to their respected institutes and universities.

References

  1. Marin C, Lainez M. Salmonella detection in feces during broiler rearing and after live transport to the slaughterhouse. Poult Sci 2009;88:1999-2005. https://doi.org/10.3382/ps.2009-00040
  2. Koutsoumanis K, Allende A, Alvarez-Ordonez A, et al. Salmonella control in poultry flocks and its public health impact. EFSA J 2019;17:e05596. https://doi.org/10.2903/j.efsa.2019.5596
  3. Hashemzadeh Z, Karimi Torshizi MA, Rahimi S, Razban V, Salehi TZ. Prevention of Salmonella Colonization in neonatal broiler chicks by using different routes of probiotic administration in hatchery evaluated by culture and PCR techniques. J Agric Sci Technol 2010;12:425-32.
  4. Thacker PA. Alternatives to antibiotics as growth promoters for use in swine production: a review. J Anim Sci Biotechnol 2013;4:35. https://doi.org/10.1186/2049-1891-4-35
  5. Xu Y, Li X, Jin L, et al. Application of chicken egg yolk immunoglobulins in the control of terrestrial and aquatic animal diseases: a review. Biotechnol Adv 2011;29:860-8. https://doi.org/10.1016/j.biotechadv.2011.07.003
  6. Kovacs-Nolan J, Mine Y. Egg yolk antibodies for passive immunity. Annu Rev Food Sci Technol 2012;3:163-82. https://doi.org/10.1146/annurev-food-022811-101137
  7. Pereira EPV, van Tilburg MF, Florean EOPT, Guedes MIF. Egg yolk antibodies (IgY) and their applications in human and veterinary health: a review. Int Immunopharmacol 2019;73:293-303. https://doi.org/10.1016/j.intimp.2019.05.015
  8. Diraviyam T, Zhao B, Wang Y, et al. Effect of chicken egg yolk antibodies (IgY) against diarrhea in domesticated animals: a systematic review and meta-analysis. PLoS One 2014;9:e97716. https://doi.org/10.1371/journal.pone.0097716
  9. Hatta H, Tsuda K, Akachi S, Kim M, Yamamoto T, Ebina T. Oral passive immunization effect of anti-human rotavirus IgY and its behavior against proteolytic enzymes. Biosci Biotechnol Biochem 1993;57:1077-81. https://doi.org/10.1271/bbb.57.1077
  10. Ebina T, Tsukada K, Umezu K, et al. Gastroenteritis in suckling mice caused by human rotavirus can be prevented with egg yolk immunoglobulin (IgY) and treated with a protein-bound polysaccharide preparation (PSK). Microbiol Immunol 1990;34:617-29. https://doi.org/10.1111/j.1348-0421.1990.tb01037.x
  11. Bogstedt AK, Hammarstrom L, Robertson AK. Survival of immunoglobulins from different species through the gastrointestinal tract in healthy adult volunteers: implications for human therapy. Antimicrob Agents Chemother 1997;41:2320. https://doi.org/10.1128/aac.41.10.2320
  12. Chitprasert P, Sutaphanit P. Holy basil (Ocimum sanctum Linn.) essential oil delivery to swine gastrointestinal tract using gelatin microcapsules coated with aluminum carboxymethyl cellulose and beeswax. J Agric Food Chem 2014;62:12641-8. https://doi.org/10.1021/jf5019438
  13. Bakhshi M, Ebrahimi F, Nazarian S, Zargan J, Behzadi F, Gariz DS. Nano-encapsulation of chicken immunoglobulin (IgY) in sodium alginate nanoparticles: In vitro characterization. Biologicals 2017;49:69-75. https://doi.org/10.1016/j.biologicals.2017.06.002
  14. Ren Z, Zhang X, Guo Y, Han K, Huo N. Preparation and in vitro delivery performance of chitosan-alginate microcapsule for IgG. Food Agric Immunol 2017;28:1-13. https://doi.org/10.1080/09540105.2016.1202206
  15. Cuadros TR, Erices AA, Aguilera JM. Porous matrix of calcium alginate/gelatin with enhanced properties as scaffold for cell culture. J Mech Behav Biomed Mater 2015;46:331-42. https://doi.org/10.1016/j.jmbbm.2014.08.026
  16. Gawad R, Fellner V. Evaluation of glycerol encapsulated with alginate and alginate-chitosan polymers in gut environment and its resistance to rumen microbial degradation. Asian-Australas J Anim Sci 2019;32:72-81. https://doi.org/10.5713/ajas.18.0110
  17. Qiu ZZ, Chin KB. Physicochemical properties and shelf-life of low-fat pork sausages wrapped with active film manufactured by sodium alginate and cherry tomato powder. Asian-Australas J Anim Sci 2020;33:1470-6. https://doi.org/10.5713/ajas.20.0132
  18. Cui LH, Yan CG, Li HS, et al. A new method of producing a natural antibacterial peptide by encapsulated probiotics internalized with inulin nanoparticles as prebiotics. J Microbiol Biotechnol 2018;28:510-9. https://doi.org/10.4014/jmb.1712.12008
  19. Jiang T, Singh B, Maharjan S, et al. Oral delivery of probiotic expressing M cell homing peptide conjugated BmpB vaccine encapsulated into alginate/chitosan/alginate microcapsules. Eur J Pharm Biopharm 2014;88:768-77. https://doi.org/10.1016/j.ejpb.2014.07.003
  20. Vaughn SE. Review of the third edition of the guide for the care and use of agricultural animals in research and teaching. J Am Assoc Lab Anim Sci 2012;51:298-300.
  21. Hansen P, Scoble JA, Hanson B, Hoogenraad NJ. Isolation and purification of immunoglobulins from chicken eggs using thiophilic interaction chromatography. J Immunol Methods 1998;215:1-7. https://doi.org/10.1016/S0022-1759(98)00050-7
  22. Hussein MA, Rehan IF, Rehan AF, et al. Egg yolk IgY: a novel trend of feed additives to limit drugs and to improve poultry meat quality. Front Vet Sci 2020;7:350. https://doi.org/10.3389/fvets.2020.00350
  23. Figueiredo FC, Ranke FFB, Oliva-Neto P. Evaluation of xylooligosaccharides and fructooligosaccharides on digestive enzymes hydrolysis and as a nutrient for different probiotics and Salmonella typhimurium. LWT 2019;118:108761. https://doi.org/10.1016/j.lwt.2019.108761
  24. Mahdavi AH, Rahmani HR, Nili N, Samie AH, SoleimanianZad S, Jahanian R. Effects of dietary egg yolk antibody powder on growth performance, intestinal Escherichia coli colonization, and immunocompetence of challenged broiler chicks. Poult Sci 2010;89:484-94. https://doi.org/10.3382/ps.2009-00541
  25. Castanon JIR. History of the use of antibiotic as growth promoters in European poultry feeds. Poult Sci 2007;86:2466-71. https://doi.org/10.3382/ps.2007-00249
  26. Gadde U, Kim WH, Oh ST, Lillehoj HS. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Anim Health Res Rev 2017;18:26-45. https://doi.org/10.1017/s1466252316000207
  27. Butaye P, Devriese LA, Haesebrouck F. Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on gram-positive bacteria. Clin Microbiol Rev 2003;16:175-88. https://doi.org/10.1128/cmr.16.2.175-188.2003
  28. Qian Y, Song K, Hu T, Ying T. Environmental status of livestock and poultry sectors in China under current transformation stage. Sci Total Environ 2018;622-623:702-9. https://doi.org/10.1016/j.scitotenv.2017.12.045
  29. Van Immerseel F, Eeckhaut V, Moore RJ, Choct M, Ducatelle R. Beneficial microbial signals from alternative feed ingredients: a way to improve sustainability of broiler production? Microb Biotechnol 2017;10:1008-11. https://doi.org/10.1111/1751-7915.12794
  30. Attia YA, Al-Harthi MA. Nigella seed oil as an alternative to antibiotic growth promoters for broiler chickens. Eur Poult Sci 2015;79:Nigella/1-Nigella/13(10-1399). https://doi.org/10.1399/eps.2015.80
  31. Cho JH, Kim HJ, Kim IH. Effects of phytogenic feed additive on growth performance, digestibility, blood metabolites, intestinal microbiota, meat color and relative organ weight after oral challenge with Clostridium perfringens in broilers. Livest Sci 2014;160:82-8. https://doi.org/10.1016/j.livsci.2013.11.006
  32. Amad AA, Manner K, Wendler KR, Neumann K, Zentek J. Effects of a phytogenic feed additive on growth performance and ileal nutrient digestibility in broiler chickens. Poult Sci 2011;90:2811-6. https://doi.org/10.3382/ps.2011-01515
  33. Rohe I, Boroojeni FG, Zentek J. Effect of feeding soybean meal and differently processed peas on intestinal morphology and functional glucose transport in the small intestine of broilers. Poult Sci 2017;96:4075-84. https://doi.org/10.3382/ps/pex199
  34. He Y, Yang Y, Dong Y, Yan C, Zhang B. The effects of flavormycin and colistin sulfate pre-treatment on ileal bacterial community composition, the response to salmonella typhimurium and host gene expression in broiler chickens. Microorganisms 2019;7:574. https://doi.org/10.3390/microorganisms7110574
  35. Darabighane B, Mahdavi A, Mirzaei Aghjehgheshlagh F, Zarei A, Kasapidou E, Nahashon SN. Effect of Aloe vera and vitamin E supplementation on the immune response of broilers. Revista Colombiana de Ciencias Pecuarias 2017;30:159-64. https://doi.org/10.17533/udea.rccp.v30n2a07
  36. Zhang J, Li HH, Chen YF, et al. Microencapsulation of immunoglobulin Y: optimization with response surface morphology and controlled release during simulated gastrointestinal digestion. J Zhejiang Univ Sci B 2020;21:611-27. https://doi.org/10.1631/jzus.B2000172
  37. Dong ZL, Wang YW, Song D, et al. The effects of dietary supplementation of pre-microencapsulated Enterococcus fecalis and the extract of Camellia oleifera seed on growth performance, intestinal morphology, and intestinal mucosal immune functions in broiler chickens. Anim Feed Sci Technol 2016;212:42-51. https://doi.org/10.1016/j.anifeedsci.2015.11.014
  38. Xu ZR, Hu CH, Xia MS, Zhan XA, Wang MQ. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poult Sci 2003;82:1030-6. https://doi.org/10.1093/ps/82.6.1030
  39. Thuekeaw S, Angkanaporn K, Nuengjamnong C. Microencapsulated basil oil (Ocimum basilicum Linn.) enhances growth performance, intestinal morphology, and antioxidant capacity of broiler chickens in the tropics. Anim Biosci 2022;35:752-62. https://doi.org/10.5713/ab.21.0299
  40. Khattak F, Ronchi A, Castelli P, Sparks N. Effects of natural blend of essential oil on growth performance, blood biochemistry, cecal morphology, and carcass quality of broiler chickens. Poult Sci 2014;93:132-7. https://doi.org/10.3382/ps.2013-03387
  41. Perai AH, Kermanshahi H, Moghaddam HN, Zarban A. Effects of chromium and chromium+vitamin C combination on metabolic, oxidative, and fear responses of broilers transported under summer conditions. Int J Biometeorol 2015;59:453-62. https://doi.org/10.1007/s00484-014-0860-2
  42. Abdelqader A, Al Fataftah AR, Das G. Effects of dietary Bacillus subtilis and inulin supplementation on performance, eggshell quality, intestinal morphology and microflora composition of laying hens in the late phase of production. Anim Feed Sci Technol 2013;179:103-11. https://doi.org/10.1016/j.anifeedsci.2012.11.003
  43. Carlier FM, Sibille Y, Pilette C. The epithelial barrier and immunoglobulin A system in allergy. Clin Exp Allergy 2016;46:1372-88. https://doi.org/10.1111/cea.12830
  44. Zhang X, Calvert RA, Sutton BJ, Dore KA. IgY: a key isotype in antibody evolution. Biol Rev Camb Philos Soc 2017;92:2144-56. https://doi.org/10.1111/brv.12325
  45. Balan P, Sik-Han K, Moughan PJ. Impact of oral immunoglobulins on animal health-A review. Anim Sci J 2019;90:1099-110. https://doi.org/10.1111/asj.13258
  46. Maritim AC, Sanders RA, Watkins JB, 3rd. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 2003;17:24-38. https://doi.org/10.1002/jbt.10058
  47. Lauridsen C. From oxidative stress to inflammation: redox balance and immune system. Poult Sci 2019;98:4240-6. https://doi.org/10.3382/ps/pey407
  48. Rehman ZU, Meng C, Sun Y, et al. Oxidative stress in poultry: lessons from the viral infections. Oxid Med Cell Longev 2018;2018:5123147. https://doi.org/10.1155/2018/5123147
  49. Zaboli G, Huang X, Feng X, Ahn DU. How can heat stress affect chicken meat quality? - a review. Poult Sci 2019;98:1551-6. https://doi.org/10.3382/ps/pey399
  50. Wasti S, Sah N, Mishra B. Impact of heat stress on poultry health and performances, and potential mitigation strategies. Animals (Basel) 2020;10:1266. https://doi.org/10.3390/ani10081266
  51. Hadidi M, Pouramin S, Adinepour F, Haghani S, Jafari SM. Chitosan nanoparticles loaded with clove essential oil: Characterization, antioxidant and antibacterial activities. Carbohydr Polym 2020;236:116075. https://doi.org/10.1016/j.carbpol.2020.116075
  52. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016;7:189-200. https://doi.org/10.1080/19490976.2015.1134082
  53. Hatamzade Isfahani N, Rahimi S, Rasaee MJ, Torshizi MAK, Salehi TZ, Grimes JL. The effect of capsulated and non-capsulated egg-yolk-specific antibody to reduce colonization in the intestine of Salmonella enterica ssp. enterica serovar Infantis-challenged broiler chickens. Poult Sci 2020;99:1387-94. https://doi.org/10.1016/j.psj.2019.11.019
  54. Han S, Wen Y, Yang F, He P. Chicken egg yolk antibody (IgY) protects mice against enterotoxigenic escherichia coli infection through improving intestinal health and immune response. Front Cell Infect Microbiol 2021;11:662710. https://doi.org/10.3389/fcimb.2021.662710
  55. Kim GB, Seo YM, Kim CH, Paik IK. Effect of dietary prebiotic supplementation on the performance, intestinal microflora, and immune response of broilers. Poult Sci 2011;90:75-82. https://doi.org/10.3382/ps.2010-00732