References
- 강훈식, 성다연, 노태희(2007). 소집단 토론과 시각적 학습 양식이 그리기와 쓰기를 활용한 다중 표상 학습에 미치는 영향: 화학 개념을 중심으로. 한국과학교육학회지, 27(1), 28-36. https://doi.org/10.14697/JKASE.2007.27.1.28
- 강훈식, 이성미, 노태희(2006). 다중 표상 학습에 적용한 그리기와 쓰기에서 시각적 정보의 형태에 따른 교수 효과. 한국과학교육학회지, 26(3), 367-375. https://doi.org/10.14697/JKASE.2006.26.3.367
- 김희경, 김희진(2009). 유체에서 압력의 작용에 대한 대학생들의 개념. 새물리, 59(4), 329-335.
- 노태희, 강훈식, 성다연(2007). 그리기와 쓰기를 활용한 다중 표상 학습에서소집단 토론과 시각적 학습 양식의 영향. 한국과학교육학회지, 27(1), 28-36. https://doi.org/10.14697/JKASE.2007.27.1.28
- 윤혜경(2018). 과학 교수 학습을 위한 시각적 표상 능력의 교육목표 분류체계 개발 및 타당화. 한국과학교육학회지, 38(2), 161-170. https://doi.org/10.14697/JKASE.2018.38.2.161
- 윤혜경(2019). 그림자 현상에 대한 초등학생의 시각적 표상 능력. 한국과학교육학회지, 39(2), 295-305. https://doi.org/10.14697/JKASE.2019.39.2.295
- 장진아(2020). 전자기 관련 실험 활동에서 초등 교사가 사용한 표상 패턴과 의미 형성 과정 분석. 초등과학교육, 39(2), 204-218.
- 정용재, 송진웅(2004). 전형적 인식상황(TPS) 분석을 통한 6학년 학생들의 힘의 작용에 관한 생각 조사. 한국초등과학교육학회지, 23(3), 238-250.
- Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183-198. https://doi.org/10.1016/j.learninstruc.2006.03.001
- Airey, J., & Linder, C. (2009). A disciplinary discourse perspective on university science learning: Achieving fluency in a critical constellation of modes. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 46(1), 27-49. https://doi.org/10.1002/tea.20265
- Airey, J., & Linder, C. (2017). Social semiotics in university physics education. In D. F. Treagust, R. Duit, & H. E. Fischer (Eds.), Multiple Representations in Physics Education (pp. 95-122). Cham: Springer.
- Chandler, D. (2002). Semiotics: the basics. (Chapter 1). New York: Routledge.
- Chang, J., Park, J., Tang, K. S., Treagust, D. F., & Won, M. (2020). The features of norms formed in constructing student-generated drawings to explain physics phenomena. International Journal of Science Education, 42(8), 1362-1387. https://doi.org/10.1080/09500693.2020.1762138
- Cromley, J. G., Du, Y., & Dane, A. P. (2020). Drawingto-learn: Does meta-analysis show differences between technology-based drawing and paper-and-pencil drawing?. Journal of Science Education and Technology, 29(2), 216-229. https://doi.org/10.1007/s10956-019-09807-6
- Halliday, M. A. K. (1978). Language as social semiotic: The social interpretation of language and meaning. London: Edward Arnold.
- Han, J., & Roth, W. (2006). Chemical inscriptions in Korean textbooks: Semiotics of macro- and microworld. Science Education, 90(2), 173-201. https://doi.org/10.1002/sce.20091
- Hodge, R. & Kress, G. (1988). Social Semiotics. Cambridge: Polity
- Kang, S., & Tversky, B. (2016). From hands to minds: Gestures promote understanding. Cognitive Research: Principles and Implications, 1(1), 1-15. https://doi.org/10.1186/s41235-016-0011-x
- Kim, J. H., Cho, H. R., Cho, Y. H., & Jeong, D. H. (2018). The Difference of gestures between sScientists and middle school students in scientific discourse: Focus on molecular movement and the change in state of material. Journal of The Korean Association For Science Education, 38(2), 273-291.
- Kim, M., & Jin, Q. (2022). Studies on visualisation in science classrooms: a systematic literature review. International Journal of Science Education, 44(17), 2613-2631. https://doi.org/10.1080/09500693.2022.2140020
- Kress, G. & van Leeuwen, T. (2001). Multimodal Discourse: The Modes and Media of Contemporary Communication. London: Arnold.
- Kress, G. (2003). Literacy in the new media age. London: Routledge.
- Kress, G., & van Leeuwen, T. (2006). Reading images: The grammar of visual design (2nd ed.). London: Routledge.
- Kress, G., Charalampos, T., Jewitt, C., & Ogborn, J. (2014). Multimodal teaching and learning. London: Continuum.
- Lemke, J. L. (1998a). Multiplying meaning. In J. R. Martin, J. R. Martin, & R. Veel (Eds.), Reading science: Critical and functional perspectives on discourses of science (pp. 87-113). London: Routledge.
- Lemke, J. L. (1998b). Teaching all the languages of science: Words, symbols, images, and actions. In Conference on science education in Barcelona. Retrieved from http://academic.brooklyn.cuny.edu/education/jlemke/papers/barcelon.htm
- Lemke, J. L. (1999). Typological and topological meaning in diagnostic discourse, Discourse Processes, 27(2), 173-185. https://doi.org/10.1080/01638539909545057
- Lemke, J. L. (2002). Travels in hypermodality. Visual communication, 1(3), 299-325. https://doi.org/10.1177/147035720200100303
- Lemke, J. L. (2003). Mathematics in the middle: Measure, picture, gesture, sign, and word. Educational perspectives on mathematics as semiosis: From thinking to interpreting to knowing, 1, 215-234.
- Muller, A., He ttmannspe rge r, R., Sche id, J., & Schnotz, W. (2017). Representational Competence, Understanding of Experiments, Phenomena and Basic Concepts in Geometrical Optics: A Representational Approach. In D. F. Tre agust, R. Duit, & H. E. Fische r (Eds.), Multiple Representations in Physics Education (pp. 209-229). Cham: Springer.
- National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.
- Opfermann, M., Schmeck, A., & Fischer, H. E. (2017). Multiple representations in physics and science e ducation: Why should we use them?. In D. F. Treagust, R. Duit, & H. E. Fischer (Eds.), Multiple representations in physics education (pp. 1-22). Cham: Springer.
- Park, J., & Chang, J. (2020). A simple method for comparing the properties of gases and liquids using a decompressible container. Physics Education, 55(2), 023006.
- Park, J., Chang, J., Tang, K. S., Treagust, D. F., & Won, M. (2020). Sequential patterns of students' drawing in constructing scientific explanations: focusing on the interplay among three levels of pictorial representation. International Journal of Science Education, 42(5), 677-702. https://doi.org/10.1080/09500693.2020.1724351
- Park, J., Tang, K. S., & Chang, J. (2021). Plan-DrawEvaluate (PDE) pattern in students' collaborative drawing: Interaction between visual and verbal modes of representation. Science Education, 105(5), 1013-1045. https://doi.org/10.1002/sce.21668
- Prain, V., & Waldrip, B. (2006). An exploratory study of teachers' and students' use of multi-modal representations of concepts in primary science. International Journal of Science Education, 28(15), 1843-1866. https://doi.org/10.1080/09500690600718294
- Sjoberg, M., Furberg, A., & Knain, E. (2022). Undergraduate biology students' model-based reasoning in the laboratory: Exploring the role of drawings, talk, and gestures. Science Education, 107(1), 124-148. https://doi.org/10.1002/sce.21765
- Tang, K. S. (2020). Discourse strategies for science teaching and learning: Research and practice. London: Routledge.
- Tang, K. S., Delgado, C., & Moje, E. B. (2014). An integrative framework for the analysis of multiple and multimodal representations for meaning-making in science education. Science Education, 98(2), 305-326. https://doi.org/10.1002/sce.21099
- Tang, K. S., Jeppsson, F., Danielsson, K., & Bergh Nestlog, E. (2022). Affordances of physical objects as a material mode of representation: A social semiotics perspective of hands-on meaning-making. International Journal of Science Education, 44(2), 179-200. https://doi.org/10.1080/09500693.2021.2021313
- Tang, K. S., Won, M., & Treagust, D. (2019). Analytical framework for student-generated drawings. International Journal of Science Education, 41(16), 2296-2322. https://doi.org/10.1080/09500693.2019.1672906
- Treagust, D. F., Duit, R., & Fischer, H. E. (Eds.). (2017). Multiple representations in physics education (Vol. 10). Cham: Springer.
- Tsui, C. Y., & Treagust, D. F. (2013). Introduction to multiple representations: Their importance in biology and biological education. In D. F. Treagust, & C. Y., Tsui (Eds.), Multiple representations in biological education (pp. 3-18). Dordrecht: Springer.
- Tytler, R. (1992). Children's explanations of air pressure generated by small group activities. Research in Science Education, 22(1), 393-402. https://doi.org/10.1007/BF02356920
- Tytler, R. (1998). Children's conceptions of air pressure: Exploring the nature of conceptual change. International journal of science education, 20(8), 929-958. https://doi.org/10.1080/0950069980200803
- Tytler, R., Prain, V., Aranda, G., Ferguson, J., & Gorur, R. (2020). Drawing to reason and learn in science. Journal of Research in Science Teaching, 57(2), 209-231. https://doi.org/10.1002/tea.21590
- Tytler, R., Prain, V., Hubber, P., & Waldrip, B. (2013). Constructing representations to learn in science. Boston: Sense Publishers.
- van Me te r, P., & Garne r, J. (2005). The promise and practice of learner-generated drawing: Literature review and synthesis. Educational Psychology Review, 17(4), 285-325. https://doi.org/10.1007/s10648-005-8136-3
- Watson, J. D., & Crick, F. H. (1953). Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature, 171(4356), 737-738. https://doi.org/10.1038/171737a0
- Wong, E. D. (1993). Self-generated analogies as a tool for constructing and evaluating explanations of scientific phenomena. Journal of Research in Science Teaching, 30(4), 367-380. https://doi.org/10.1002/tea.3660300405
- Yeo, J., & Gilbert, J. K. (2014). Constructing a scientific explanation-A narrative account. International Journal of Science Education, 36(11), 1902-1935. https://doi.org/10.1080/09500693.2014.880527
- Yoon, H. G., Kim, M., & Lee, E. A. (2021). Visual representation construction for collective reasoning in elementary science classrooms. Education Sciences, 11(5), 246.