DOI QR코드

DOI QR Code

Characteristics of Science Education Apps Developed by Preservice Elementary Teachers and Elementary Teachers' Thoughts about Education Developing Apps

초등 예비교사가 제작한 과학교육용 앱의 특징과 앱 제작 교육에 대한 초등교사의 생각

  • Na, Jiyeon (Chuncheon National University of Education)
  • Received : 2022.12.06
  • Accepted : 2022.12.28
  • Published : 2023.02.28

Abstract

This study examined inservice elementary teachers' thoughts on the development of educational apps by preservice elementary teachers and implications for TPACK education for preservice elementary teachers. A case study was conducted in which preservice elementary teachers developed a science education app, and the three teachers were surveyed for their thoughts regarding this. The results regarding the characteristics of the developed app by preservice teachers were as follows. First, "inquiry" had the highest value among educational goals intended by the preservice teachers. In addition, the scores for tool-type apps and apps in which interaction between learners and instructors occurs were relatively high. Second, most of the preservice teachers developed apps to meet curriculum goals, but their apps showed low-level characteristics in terms of the constructive and cooperative dimensions. The results of the analysis of the thinking of elementary school teachers regarding the education development apps are as follows. First, elementary school teachers assigned the lowest scores to the effectiveness of the apps, and to this problem, the achievement standard with respect to the curriculum and the evaluation and modification activities fir the apps were proposed. Second, the teachers indicated that it would be appropriate to provide the experience of making apps to directly improve the TPACK of preservice teachers. Third, the respondents thought that preservice teachers should develop block coding literacy to create apps using App Inventor. Fourth, the teachers considered it necessary to emphasize simulated instructions, as well as the experience of collecting and handling data through apps to improve preservice teachers' TPACK app development for educational use.

본 연구는 초등 예비교사들이 제작한 앱의 특징과 앱 제작 교육에 대한 초등교사의 생각을 살펴보고 이를 통해 초등 예비교사를 위한 TPACK 교육에 시사점을 도출하는 데에 그 목적이 있다. 과학교육 앱 제작 경험을 제공한 사례를 수집하고, 3명의 초등교사를 대상으로 해당 사례에 관한 생각을 조사하였다. 예비교사들이 제작한 앱의 특징을 분석한 결과는 다음과 같다. 첫째, 예비교사들이 앱을 제작하면서 의도한 교육목표는 탐구가 가장 높게 나타났고, 도구형과 학습자·교수자간 상호작용이 일어나는 앱을 제작한 경우가 상대적으로 높게 나타났다. 둘째, 대부분의 예비교사들이 교육과정 목표에 부합하도록 앱을 제작하였으나 건설적 차원과 협력적 차원에서는 낮은 수준의 유형에 해당하는 앱의 특징을 보여 주었다. 예비교사들이 제작한 앱과 앱 제작 교육에 대한 초등교사들의 생각을 분석한 결과는 다음과 같다. 첫째, 초등교사들은 예비교사들이 제작한 앱의 효과성에 가장 낮은 점수를 주었고, 이를 해결하기 위해 교육과정 성취기준 분석과 기 개발된 앱 평가 및 수정 활동을 제안하였다. 둘째, 초등교사들은 예비교사의 TPACK 향상을 위하여 앱을 직접 제작해보는 경험을 제공하는 것이 적절하다고 응답하였다. 셋째, 초등교사들은 앱 인벤터를 활용하여 앱을 제작할 수 있는 블록 코딩 문해력 정도가 예비교사에게 필요하다고 생각하였다. 넷째, 예비교사의 TPACK을 향상시키기 위해 앱 제작 교육에서 모의수업과 앱을 통해 데이터를 수집하고 다루어 보는 경험을 강조할 필요가 있다고 하였다.

Keywords

Acknowledgement

이 논문은 2022년 교육부의 춘천교육대학교 국립대학육성사업 사업비 지원을 받아 작성되었음.

References

  1. 고호경, 남가영, 맹은경(2013). 교사의 반성적 수업 평가의 요소 및 수준에 관한 사례 연구. 교과교육학연구, 17(3), 839-868. https://doi.org/10.24231/RICI.2013.17.3.839
  2. 교육부(2020a). 코로나 이후, 미래교육 전환을 위한 10대 정책과제. Retrieved January 20, 2021, from https://ifblog.tistory.com/11190
  3. 교육부(2020b). 과학, 수학, 정보, 융합교육 종합계획 ('20-'24). Retrieved January 20, 2021, from https://blog.naver.com/moeblog/221979230254
  4. 교육부(2020c). 학교 과학실, 지능정보기술 기반 탐구키움터로 변화 시동. Retrieved January 20, 2021, from https://www.moe.go.kr/boardCnts/viewRenew.do?boardID=294&lev=0&statusYN=W&s=moe&m=020402&opType=N&boardSeq=81177
  5. 교육부(2021). '2022 개정 교육과정'총론 주요사항 발표. Retrieved November 24, 2021, from https://www.moe.go.kr/boardCnts/viewRenew.do?boardID=294&boardSeq=89671&lev=0
  6. 김거현, 유인환(2017). 앱 인벤터 활용 SW 교육이 초등학생의 컴퓨팅 사고력과 컴퓨터에 대한 태도에 미치는 영향. 정보교육학회논문지, 21(4), 371-380.
  7. 김영민, 문지선, 박정숙, 임길선(2010). 과학교사양성과정에 대한 심층면담을 통한 경력과학교사들과 초임과 학교사들의 인식 비교. 한국과학교육학회지, 30(8), 1002-1016. https://doi.org/10.14697/JKASE.2010.30.8.1002
  8. 김은수, 박준석(2012). 앱 저작도구를 이용한 교육용 앱 개발 연구. 디지털정책연구, 10(5), 1-6.
  9. 나지연(2021). 스마트 테크놀로지 활용 과학 수업 계획 시 발생하는 초등 예비교사의 질문과 수업과정안 분석. 한국초등과학교육학회, 40(2), 162-174.
  10. 나지연, 장병기(2016). 교육실습에 참여한 예비 초등교사들이 테크놀로지 활용 과학수업 실행에서 느끼는 어려움과 요구. 초등과학교육, 35(1), 98-110.
  11. 서형석, 이용배(2017). 초등정보영재 대상의 앱 인벤터 프로그래밍 교육의 효과. 정보교육학회논문지, 21(1), 13-22.
  12. 안상진, 이영준(2016). 예비교사의 프로그래밍 교수내용 지식 향상을 위한 프로그래밍 교육프로그램 설계. 컴퓨터교육학회논문지, 19(2), 1-10. https://doi.org/10.32431/KACE.2016.19.2.001
  13. 유인환(2014). SW 교육을 위한 로봇과 앱 개발 도구 활용 프로그래밍 교육 방안. 정보교육학회논문지, 18(4), 615-624.
  14. 윤성혜, 강우리(2018). 교사의 앱 개발 교육에 대한 관심도 분석: 관심중심수용모형(CBAM)을 중심으로. 정보교육학회논문지, 22(5), 509-517.
  15. 윤성혜, 강우리, 이명우 (2017). 고등학생 대상 저작도구 활용 앱 개발 교육의 정의적⋅인지적 효과 분석. 정보교육학회논문지, 21(4), 415-424.
  16. 이근호, 이광우, 박지만, 박민정(2013). 핵심역량 중심의 교육과정 재구조화 방안 연구. 한국교육과정평가원. 연구보고 CRC 2013-17.
  17. 임병노, 임정훈, 성은모(2013). 스마트 교육 핵심 속성 및 스마트 교육 콘텐츠 유형 탐색. 교육공학연구, 29(3), 459-489.
  18. 정수정, 임걸, 고유정, 심현애, 김경연(2010). 스마트폰의 교육용 어플리케이션 동향분석 및 발전방향 연구. 디지털콘텐츠학회 논문지, 11(2), 203-216.
  19. 최경식, 백성혜(2020). TPACK 발달 단계를 고려한 수업이 예비 교사의 자기효능감 및 발달 수준에 미치는 효과. 학습자중심교과교육학회, 20(22), 1371-1391.
  20. 최은선, 이영준, 백성혜(2017). 프로그래밍 기반 수업이 과학교사의 TPACK에 대한 인식에 미치는 영향. 한국과학교육학회지, 37(4), 693-703. https://doi.org/10.14697/JKASE.2017.37.4.693
  21. AI4K12 (2022). The Artificial Intelligence (AI) for K-12 initiative. Retrieved October 5, 2022, from https://ai4k12.org/
  22. Alessi, S. & Trollip, S. (1985). Computer-based instruction. Englewood Cliffs.
  23. Angeli, C., & Valanides, N. (2009). Epistemological and methodological issues for the conceptualization, development, and assessment of ICT-TPCK: Advances in technological pedagogical content knowledge (TPCK). Computers & Education, 52(1), 154-168. https://doi.org/10.1016/j.compedu.2008.07.006
  24. Baran, E., & Uygun, E. (2016). Putting technological, p edagogical, and content knowledge (TPACK) in action: An integrated TPACK-design-learning (DBL) approach. Australasian Journal of Educational Technology, 32(2), 47-63.
  25. Buckenmeyer, J. A. (2010). Beyond computers in the classroom: Factors related to technology adoption to enhance teaching and learning. Contemporary Issues in Education Research (CIER), 3(4), 27-36. https://doi.org/10.19030/cier.v3i4.194
  26. Calik, M., Ozsevgec, T., Ebenezer, J., Artun, H., & Kucuk, Z. (2014). Effects of 'environmental chemistry' elective course via technology-embedded scientific inquiry model on some variables. Journal of Science Education and Technology, 23(3), 412-430.
  27. Canbazoglu Bilici, S., Guzey, S. S., & Yamak, H. (2016). Assessing pre-service science teachers' technological pedagogical content knowledge (TPACK) through observations and lesson plans. Research in Science & Technological Education, 34(2), 237-251. https://doi.org/10.1080/02635143.2016.1144050
  28. Future Ready School (2021). Future ready schools' framworks. Retrieved March 10, 2021, from https://futureready.org/ourwork/future-ready-frameworks/
  29. Gardner, H., & Davis, K. (2014). The AppGeneration: How Today's Youth Navigate Identity, Intimacy, and Imagination in a Digital World. (S. Lee, Trans.). Seoul: Wiseberry. (Original work published 2013).
  30. Grover, S., & Pea, R. (2013, March). Using a discourseintensivepedagogy and android's app inventor forintroducing computational concepts to middleschool students. Paper presented at the 44th ACM Technical Symposium on Computer Science Education, 723-728.
  31. Harris, J., Grandgenett, N., & Hofer, M. (2010). Testing a TPACK-based technology integration assessment rubric. In Society for Information Technology & Teacher Education International Conference, 2010(1), 3833-3840.
  32. Jaipal-Jamani, K., & Figg, C. (2015). A case study of a TPACK-based approach to teacher professional development: Teaching science with blogs. Contemporary Issues in Technology and Teacher Education, 15(2), 161-200.
  33. Janssen, N., Knoef, M., & Lazonder, A. W. (2019). Technological and pedagogical support for pre-service teachers' lesson planning. Technology, Pedagogy and Education, 28(1), 115-128. https://doi.org/10.1080/1475939X.2019.1569554
  34. Jen, T. H., Yeh, Y. F., Hsu, Y. S., Wu, H. K., & Chen, K. M. (2016). Science teachers' TPACK-Practical: Standard-setting using an evidence-based approach. Computers & Education, 95, 45-62. https://doi.org/10.1016/j.compedu.2015.12.009
  35. Jimoyiannis, A. (2010). Designing and implementing an integrated technological pedagogical science knowledge framework for science teachers professional development. Computers & Education, 55(3), 1259-1269. https://doi.org/10.1016/j.compedu.2010.05.022
  36. Khalid, A., Dukmak, S. J., & Dweikat, F. F. I. (2017). Pre-service teachers' perception of their educational preparation. International Journal for Research in Education, 41(1), 273-303.
  37. Koehler, M. J. & Mishra, P. (2008). Introducing TPCK. In AACTE committee on innovation and technology (Ed.), Handbook of technological pedagogical content knowledge (TPCK) for educators (pp. 3-29). NY: Routledge.
  38. Koh, J. H. L. (2013). A rubric for assessing teachers' lesson activities with respect to TPACK for meaningful learning with ICT. Australasian Journal of Educational Technology, 29(6), 887-900. https://doi.org/10.14742/ajet.228
  39. Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for integrating technology in teachers' knowledge. Teachers College Record, 108, 1017-1054. https://doi.org/10.1111/j.1467-9620.2006.00684.x
  40. Moore, M. G., & Kearsley, G. (1996). Distance education: A System view. Boston: Wadsworth Publishing Company.
  41. Nadeem, M., Rana, M. S., Lone, A. H., Maqbool, S., Naz, K., & Ali, A. (2011). Teacher's competencies and factors affecting the performance of female teachers in Bahawalpur (Southern Punjab) Pakistan. International Journal of Business and Social Science, 2(19), 217-222.
  42. Nieveen, N., & Folmer, E. (2010). Formative Evaluation in Educational Design Research. In T. Plomp, & N. Nieveen (Eds.), Educational Design Research (pp. 152-169). Enschede, The Netherlands: SLO - Netherlands Institute for Curriculum Development.
  43. Nuangchalerm, P., & Prachagool, V. (2010). Influences of teacher preparation program on preservice science teachers' beliefs. International Education Studies, 3(1), 87-91. https://doi.org/10.5539/ies.v3n1p87
  44. OECD (2018), Preparing our Youth for an Inclusive and Sustainable World: The OECD PISA global competence framework, https://www.oecd.org/education/ Globalcompetency-for-aninclusive-world.pdf.
  45. Owston, R. (2007). Contextual factors that sustain innovative pedagogical practice using technology: An international study. Journal of Educational Change, 8, 61-77. https://doi.org/10.1007/s10833-006-9006-6
  46. Patton, M. Q. (1990). Qualitative evaluation and research methods (2nd ed.). Hewbury Park, CA: SAGE Publications.
  47. Prince, K., Saveri, A., & Swanson, J. (2015). Exp loring the Future Education Workforce: New Roles for an Expanding Learning Ecosystem. KnowledgeWorks. Retrieved October 5, 2022, from https://knowledgeworks.org/resources/future-education-workforce-roles-ecosystem/
  48. Roblyer, M. D. (2003). Integrating educational technology into teaching. Upper Saddle River, NJ: Merrill/Prentice Hall.
  49. Schmid, M., Brianza, E., & Petko, D. (2021). Self-reported technological pedagogical content knowledge (TPACK) of pre-service teachers in relation to digital technology use in lesson plans. Computers in Human Behavior, 115, 106586.
  50. Shim, J. P., Dekleva, S., Guo, C., & Mittleman, D. (2011). Twitter, Google, iPhone/iPad, and Facebook (TGIF) and smart technology environments: How well do educators communicate with students via TGIF? Communications of the Association for Information Systems, 29(35), 657-672. https://doi.org/10.17705/1CAIS.02935
  51. Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1-22. https://doi.org/10.17763/haer.57.1.j463w79r56455411
  52. Stanford University (2016). Artificial intelligence and life in 2030: One hundred year study on artificial intelligence. Retrieved January 10, 2017, from https://ai100.stanford.edu/about
  53. Statista (2022). Mobile app downloads worldwide from 2021 to 2026, by store(in billions). Retrieved September 30, 2022, from https://www.statista.com/statistics/1010716/apple-app-store-google-play-app-downloads-forecast/
  54. Strauss, A., & Corbin, J. (1990). Basics of qualitative research. CA: Sage.
  55. Tavares, R., Marques Vieira, R., & Pedro, L. (2021). Mobile app for science education: Designing the learning approach. Education Sciences, 11(2), 79; https://doi.org/10.3390/educsci11020079.
  56. Teri, S., Acai, A., Griffith, D., Mahmoud, Q., Ma, D. W., & Newton, G. (2014). Student use and pedagogical impact of a mobile learning application. Biochemistry and Molecular Biology Education, 42(2), 121-135. https://doi.org/10.1002/bmb.20771
  57. Tondeur, J., Braak, J., Sang, G., Voogt, J., Fisser, F., & Ottenbreit-Leftwich, A. (2012). Preparing pre-service teachers to integrate technology in education: A synthesis of qualitative evidence. Computers & Education, 59(1), 134-144. https://doi.org/10.1016/j.compedu.2011.10.009
  58. Volman, M. (2005). A variety of roles for a new typ e of teacher: Educational technology and the teaching profession. Teaching and Teacher Education, 21, 15-31. https://doi.org/10.1016/j.tate.2004.11.003
  59. Zhou, G., Xu, J., & Martinovic, D. (2016). Developing pre-service teachers' capacity in teaching science with technology through microteaching lesson study approach. EURASIA Journal of Mathematics, Science and Technology Education, 13(1), 85-103. https://doi.org/10.12973/eurasia.2017.00605a