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INTRODUCTION

The use of neoadjuvant chemotherapy (NAC) followed 
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Objective: To evaluate the diagnostic performance of chest computed tomography (CT)-based qualitative and radiomics 
models for predicting residual axillary nodal metastasis after neoadjuvant chemotherapy (NAC) for patients with clinically 
node-positive breast cancer.
Materials and Methods: This retrospective study included 226 women (mean age, 51.4 years) with clinically node-positive 
breast cancer treated with NAC followed by surgery between January 2015 and July 2021. Patients were randomly divided into 
the training and test sets (4:1 ratio). The following predictive models were built: a qualitative CT feature model using logistic 
regression based on qualitative imaging features of axillary nodes from the pooled data obtained using the visual 
interpretations of three radiologists; three radiomics models using radiomics features from three (intranodal, perinodal, and 
combined) different regions of interest (ROIs) delineated on pre-NAC CT and post-NAC CT using a gradient-boosting classifier; 
and fusion models integrating clinicopathologic factors with the qualitative CT feature model (referred to as clinical-qualitative 
CT feature models) or with the combined ROI radiomics model (referred to as clinical-radiomics models). The area under the 
curve (AUC) was used to assess and compare the model performance.
Results: Clinical N stage, biological subtype, and primary tumor response indicated by imaging were associated with residual 
nodal metastasis during the multivariable analysis (all P < 0.05). The AUCs of the qualitative CT feature model and radiomics 
models (intranodal, perinodal, and combined ROI models) according to post-NAC CT were 0.642, 0.812, 0.762, and 0.832, 
respectively. The AUCs of the clinical-qualitative CT feature model and clinical-radiomics model according to post-NAC CT were 
0.740 and 0.866, respectively. 
Conclusion: CT-based predictive models showed good diagnostic performance for predicting residual nodal metastasis after 
NAC. Quantitative radiomics analysis may provide a higher level of performance than qualitative CT features models. Larger 
multicenter studies should be conducted to confirm their performance.
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by surgery as standard treatment for clinically node-
positive breast cancer is increasing [1]. NAC eradicates 
axillary nodal metastasis in 35% to 68% of patients [2]. 
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89.1%; area under the curve [AUC] 0.92); however, to our 
knowledge, the diagnostic performance of a radiomics model 
based on dedicated CT features of axillary LNs for predicting 
nodal responses after NAC has not been fully investigated. 
If staging chest CT can sufficiently predict the axillary nodal 
response, then it can be used as a more accessible and 
complementary tool by surgeons or oncologists to guide 
prompt treatment decisions and reduce the false-negative 
rate of sentinel LN biopsy (SLNB). Using both qualitative 
imaging interpretations of radiologists and quantitative 
radiomics feature analysis, we investigated whether chest CT, 
which has continuously improved over time, could predict 
residual axillary nodal metastasis after NAC in patients with 
node-positive breast cancer.

MATERIALS AND METHODS

Patient Selection and Clinicopathologic Factors
This retrospective study was approved by the Institutional 

Review Board of Chonnam National University Hwasun 
Hospital (IRB no. 2021-262). The requirement for written 
informed consent was waived.

Five-hundred forty consecutive patients with primary 
invasive breast cancer treated with NAC (T stage, 1–4; N 
stage, 0–3; and M stage, 0) followed by surgery between 
January 2015 and July 2021 were eligible for this study. 
However, we excluded patients for the following reasons: 
clinically negative LN (n = 54); inadequate breast MRI 
or chest CT images before and/or after NAC (n = 180); 
underwent excision or vacuum-assisted biopsy for primary 
cancer (n = 47); underwent axillary surgery or excisional 
axillary biopsy (n = 10); and lost to follow-up or insufficient 
clinicopathologic data (n = 23). Clinically positive nodes 
were defined as palpable nodes at the time of physical 
examination (n = 134), suspicious imaging features (n = 
208), or biopsy-proven malignancies (n = 141) [18]. Finally, 
226 patients (mean age, 51.4 years; standard deviation [SD], 
± 9.3 years) were included (Fig. 1). The data were randomly 
divided into the training (80%) and independent test (20%) 
sets. These two cohorts were separated within each class so 
that each cohort comprised an approximately similar ratio of 
residual nodal metastasis and pathologic complete response 
(pCR) groups.

According to the National Comprehensive Cancer Network 
guidelines, whole-body imaging (including chest CT, CT or 
MRI of the abdomen and pelvis, bone scanning, and PET/
CT) for initial systemic staging and the assessment of the 

The axillary nodal status after NAC is one of the strongest 
prognostic factors for clinically node-positive breast cancer, 
and accurate evaluation of the axillary response can guide 
adjuvant treatment decisions [3].

According to the American College of Radiology (ACR) 
Appropriateness Criteria, the most accurate imaging 
modalities for assessing the response after NAC are breast 
magnetic resonance imaging (MRI) of primary breast cancer 
and ultrasound (US) of the axillary lymph node (LN) [4]. 
Axillary US is highly operator-dependent and time-consuming; 
furthermore, it is difficult to identify residual metastatic 
nodes caused by chemotherapy-induced changes with axillary 
US. Therefore, alternative techniques for predicting the 
axillary nodal response are required.

Breast MRI is frequently used as a noninvasive method 
of evaluating the axillary nodal response after NAC [5-8]. 
However, the results of this method are inconsistent because 
some studies have used MRI features of breast tumors instead 
of dedicated axillary LN features [5,6], and other studies 
have combined other imaging modalities or clinicopathologic 
factors to determine the predictive performance [7,8]. 
Moreover, the diagnostic performance of breast MRI may be 
limited because of its incomplete coverage of the axillary 
region or artifacts [9].

Chest computed tomography (CT), positron emission 
tomography (PET), and PET/CT are frequently used systemic 
staging tools that allow extensive visualization of the axilla, 
thus overcoming the limitations of US. However, PET and 
PET/CT are not sufficiently sensitive for the evaluation of 
positive axillary LNs; therefore, they are recommended for 
primary nodal staging [10]. Additionally, data pertaining to 
the evaluation of axillary nodal burden using CT are limited 
because they exhibit only moderate sensitivity and specificity 
[11,12].

The use of radiomics analysis, which is a quantitative 
imaging technique, has recently emerged as a promising 
method of extracting numerous quantitative features 
from medical imaging data because of its potential as a 
noninvasive tool that can allow the understanding of disease 
processes occurring at the microscopic level [13]. Radiomics 
analysis has been used during several studies to predict the 
axillary nodal status; however, most studies used the MRI 
radiomics features of breast tumors to predict the nodal 
status and did not include patients who received NAC [14-16]. 
Recently, Yang et al. [17] reported that a radiomics model 
based on contrast-enhanced CT was useful for predicting 
axillary nodal metastasis in breast cancer (accuracy, 
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treatment response should be based on the symptoms 
and clinical stage [19]. Therefore, we included patients 
who underwent chest CT for both initial staging and the 
assessment of the treatment response. NAC recommendations 
and adjuvant treatment followed by surgery were based on 
the current National Comprehensive Cancer Network guidelines 
[19]; generally, six cycles were performed. Breast MRI and 
chest CT were performed after every three cycles of NAC. 

Clinical and pathologic data, including age, axillary nodal 
palpability, suspicious lymphadenopathy according to the 
initial US images, clinical and pathologic T and N stages, 
surgical method (mastectomy or breast-conserving surgery), 
axillary surgery (SLNB or axillary LN dissection [ALND]), 
histologic type, biologic subtype (estrogen receptor [ER]-
positive/ human epidermal growth factor receptor 2 [HER2]-
negative, ER-positive/HER2-positive, ER-negative/HER2-
positive, and ER-negative/HER2-negative), histologic 
grade, and Ki-67 proliferation rate (≥ 14% or < 14%) of the 
primary tumor were collected from all available patients. The 
main tumor sizes before and after NAC were retrieved from 
prospectively recorded MRI interpretation reports, and the 
assessment of the response of the main tumor was based on 

the revised Response Evaluation Criteria in Solid Tumours 
(RECIST) criteria [20].

CT Protocol and Criteria for Suspicious LNs 
Chest CT was performed using 128-slice multidetector row CT 

scanners (Somatom Definition Flash and Somatom Definition 
Edge [Siemens Healthcare], Revolution HD [GE Healthcare]). 
The imaging protocols for the three CT scanners are summarized 
in Supplementary Table 1. The CT dose index using a 32-
cm body phantom ranged from 400 to 685 mGy, and the CT 
effective dose ranged from 5.6 to 9.6 mSv.

CT images obtained before NAC and during the last 
follow-up evaluation after NAC were independently reviewed 
by three radiologists (R1, a designated breast radiologist 
with 4 years of experience; R2, a second-year resident-
in-training; and R3, a designated chest radiologist with 
4 years of experience) blinded to the clinicopathologic 
findings. The qualitative CT features of suspicious axillary 
LNs were defined as follows: eccentric cortex, loss of fatty 
hilum, round shape (long-axis/short-axis ratio < 1.6) [21], 
heterogeneous enhancement, and cortical irregularity 
[11,22,23].

Training set (n = 181) Independent test set (n = 45)

<Exclusion criteria>

  •   Clinically negative lymph node: 54
  •   No breast MRI or chest CT before and after neoadjuvant 

chemotherapy: 180
  •   Excision or vacuum-assisted biopsy for primary cancer: 47
  •   Axillary surgery or excisional axillary biopsy: 10
  •   Lost to follow-up or had insufficient clinicopathological 

data: 23

January 2015–July 2021 
Patients with breast cancer

Eligible patients (n = 540)

Enrolled patients (n = 226)

<Eligibility criteria>

    •   Neoadjuvant chemotherapy 
(T stage 1–4, N stage 0–3, 
M stage 0) followed by surgery

Fig. 1. Flowchart of the study population. MRI = magnetic resonance imaging, CT = computed tomography
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Perinodal infiltration caused by chemotherapy-induced 
fibrotic changes was identified as increased density or 
stranding of perinodal fat with no viable LNs. We could not 
obtain sufficient data regarding these changes; therefore, 
they were not considered during this study. The total 
number of suspicious LNs (axillary LNs with suspicious 
characteristics) were determined.

Management of Axillary LNs
If residual axillary nodal metastasis was confirmed after 

the physical examination and follow-up imaging, then the 
patient underwent ALND. SLNB was performed for all other 
patients.

Two dedicated breast surgeons (with 17–34 years of 
experience) performed SLNB and ALND according to 
standardized recommendations [24]. Residual tumor deposits 

were assessed according to the Union for International 
Cancer Control tumor node metastasis (TNM) classification 
system by a pathologist with 27 years of experience [25]. An 
axillary pCR was defined as the complete absence of cancer 
cells in the axillary LNs [26]. 

Region-Based Segmentation and Feature Extraction for 
Radiomics Analysis 

Two radiologists (R1 and R2) independently and semi-
automatically drew intranodal regions of interest (ROIs) 
within the border of all visible contrast-enhanced axillary 
nodal cortices on the pre-NAC CT images and last follow-
up post-NAC CT images using a three-dimensional slicer 
(http://www.slicer.org). The data from R1 were used only for 
radiomics modeling, and the features from R2 were used only 
for assessing interobserver reproducibility. Perinodal ROIs 
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Fig. 2. Example of residual axillary nodal metastasis and lymph node segmentation. The pre-neoadjuvant chemotherapy (NAC) axial 
contrast-enhanced computed tomography (CT) image of a 48-year-old woman shows two metastatic lymph nodes (arrows in A) at the 
level I right axillary lymph node. The lymph nodes show heterogeneous enhancement and cortical irregularity, and the short-axis diameter 
of the largest node is 30 mm. The post-NAC CT image shows a decrease in the size of the lymph nodes with remaining heterogeneous 
enhancement and cortical irregularity (arrow in B). Green and yellow in (C) and (D) represent the intranodal and perinodal regions of 
interest in post-NAC CT images, respectively. The post-NAC magnetic resonance imaging (MRI) image (F) shows that the primary breast 
cancer decreased in size compared to that in the pre-NAC MRI image (E) but remained in the right breast (arrows in E and F). The final 
pathologic result after axillary surgery revealed residual nodal metastasis.

http://www.slicer.org
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with a 4-mm extension from the boundary of the intranodal 
ROI were automatically obtained using a built-in function 
of the three-dimensional slicer, and the combined ROIs 
were created by merging the intranodal and perinodal ROIs 
(Figs. 2, 3). A total of 107 original radiomics features were 
extracted from each of the three ROIs using the pyradiomics 
module. The original features consisted of 14 shapes, 18 
first-order features, and 75 second-order features.

Feature Selection and Classifier Model Training for 
Radiomics Analysis

Radiomics-based machine learning classifiers for 
predicting the pCR were developed using separate pre-
NAC and post-NAC features. To minimize model complexity 
and select an optimal set of features for the classifier, the 
Boruta algorithm was applied for feature selection, and the 

gradient-boosting classifier was used to train and evaluate 
the radiomics model using the training dataset with four-
fold cross-validation (three parts for training and one part 
for validation). The Scikit-learn Python library was utilized 
to implement the Boruta feature selection algorithm and 
gradient-boosting classifier [27]. The names of the features 
selected for each radiomics model are presented in the 
Supplementary Material.

Classifier Model Training for CT Feature and Fusion 
Models

The visual interpretations of the three readers were pooled 
to create data for modeling. Univariable and multivariable 
logistic regression analyses were performed to evaluate 
the significant predictive factors among the qualitative CT 
features associated with residual nodal metastasis in the 
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Fig. 3. Example of the axillary nodal pathologic complete response and lymph node segmentation. The pre-neoadjuvant chemotherapy 
(NAC) axial contrast-enhanced computed tomography (CT) image of a 60-year-old woman shows a metastatic lymph node (arrow in A) at 
the level I right axillary lymph node. The lymph node shows heterogeneous enhancement, and the short-axis diameter of the largest node 
is 16 mm. The post-NAC CT image shows a decrease in the size of the lymph node without visible heterogeneous enhancement (arrow in 
B). Green and yellow in (C) and (D) represent the intranodal and perinodal regions of interest in the post-NAC CT images, respectively. 
The pre-NAC magnetic resonance imaging (MRI) image (E) and post-NAC MRI image (F) show the radiological complete response of 
primary breast cancer in the right breast (arrow in E). The final pathologic result after axillary surgery indicated the pathologic complete 
response of the axillary node.
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training set, and independent predictive clinicopathologic 
factors were used to develop the qualitative CT feature model. 
Logistic regression analyses were performed to examine the 
independent clinicopathologic factors associated with residual 
nodal metastasis. Covariates with P < 0.1 in the univariable 
analysis were included in the multivariable analysis. Finally, 
fusion models integrating the predictive clinicopathologic 
factors with the qualitative CT feature model (henceforth 
called the clinical-qualitative CT feature model) and radiomics 
models (henceforth called the clinical-radiomics model) were 
developed. To build the fusion model, the features in each 
radiomics and qualitative CT feature model were separately 
concatenated with significant predictive clinicopathologic 
factors using a gradient-boosting classifier.

Statistical Analysis
Inter-reader agreement among the radiologists regarding 

the qualitative CT features was analyzed using kappa 
statistics and the intraclass correlation coefficient (ICC) 
[28,29]. The ICC for radiomics feature extraction between 
the two radiologists (R1 and R2) was also estimated. 

The baseline characteristics of the training and test 
cohorts were compared using the chi-square test. The 
sensitivity, specificity, and accuracy were calculated for 
the identified qualitative CT features. A receiver-operating 
characteristic curve analysis was performed to set the 
optimal cutoff values of the continuous variables and 
evaluate the diagnostic ability of the multivariable model for 
clinicopathologic factors and qualitative CT features of LNs. 
Sensitivity, specificity, accuracy (with a threshold of 0.5), 
and AUCs were also calculated to evaluate the performance of 
the radiomics model. The AUCs of the predictive models were 
compared using the Delong test; P < 0.05 was considered 
significant [30]. All statistical analyses were performed 
using SPSS version 25.0 (IBM Corp.) and R version 3.5.1 (R 
Foundation for Statistical Computing). All statistical tests 
were two-tailed, and the significance level (P) was set at 
0.05. Because of the exploratory nature of our study, we 
did not adjust for increased alpha errors caused by multiple 
comparisons.

RESULTS

Patient Characteristics
The median interval between the last follow-up CT 

evaluation and surgery was 20 days (range, 2–98 days). 
The median follow-up period from the initial CT evaluation 

to the last follow-up date was 864 days (range, 343–2873 
days). Of the 226 patients, 120 (53.1%) exhibited an 
axillary nodal pCR and 106 (46.9%) showed residual nodal 
metastasis. Overall, 119 patients (52.7%) underwent SLNB, 
67 (29.6%) underwent both SLNB and ALND, and 40 (17.7%) 
underwent ALND. Among the 106 patients with residual 
nodal metastases, 18 (17.0%) underwent SLNB, 61 (57.5%) 
underwent both SLNB and ALND, and 27 (25.5%) underwent 
ALND. The mean number of harvested sentinel LNs was four 
(range, 1–10).

Mastectomy was performed for 37 patients (34.9%) in the 
residual nodal metastasis group and 25 patients (20.8%) 
in the axillary pCR group. Breast-conserving surgery was 
performed for 69 patients (65.1%) in the residual nodal 
metastasis group and 95 patients (79.2%) in the axillary pCR 
group (P = 0.025). The most common tumor histology and 
subtype determined by immunohistochemical staining were 
invasive ductal carcinoma (92.5%) and the ER-positive/
HER2-negative subtype (32.7%), respectively.

Characteristics of the Training and Test Sets
A comparison of the clinicopathologic factors of the 

training (n = 181) and test sets (n = 45) used for the 
radiomics models is summarized in Table 1. There were no 
significant differences in the clinicopathologic factors of the 
groups (all P > 0.05).

Clinical and Qualitative CT Features Associated with 
Residual Axillary Nodal Metastasis

Among the clinicopathologic factors, clinical N stage (N3 
vs. N1; odds ratio [OR], 5.869; 95% confidence interval 
[CI], 1.167–29.518; P = 0.032), biologic subtype (ER-
positive/HER2-negative vs. all negative; OR, 8.367; 95% 
CI, 2.336–29.962; P = 0.001), and primary tumor response 
at the time of MRI (complete response vs. noncomplete 
response; OR, 0.127; 95% CI, 0.034–0.475; P = 0.002) were 
significantly associated with residual nodal metastasis in 
the multivariable logistic regression analysis (Table 2). Using 
the data pooled from three readers, round LNs (OR, 0.244; 
95% CI, 0.131–0.456; P < 0.001) and the short-axis diameter 
of the largest LN (> 15/≤ 15 mm; OR, 2.133; 95% CI, 1.397–
3.256; P < 0.001) were significantly associated with residual 
nodal metastasis among the pre-NAC qualitative CT features 
(Table 3). Among the post-NAC qualitative CT features, the 
eccentric cortex (OR, 2.165; 95% CI, 1.354–3.462; P = 0.001), 
loss of fatty hilum (OR, 2.916; 95% CI, 1.620–5.250; P < 
0.001), and heterogeneous enhancement (OR, 1.933; 95% 
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Table 1. Baseline Characteristics of the Training (n = 181) and 
Test (n = 45) Sets

Training Test P

Age, yr 0.095
≥ 50 103 (56.9) 19 (42.2)
< 50 78 (43.1) 26 (57.8)

Axillary nodal palpability
Yes 103 (56.9) 31 (68.9) 0.176
No 78 (43.1) 14 (31.1)

Lymphadenopathy on US 0.719
Yes 166 (91.7) 42 (93.3)
No 15 (8.3) 3 (6.7)

Histologic type 0.762
IDC 167 (92.3) 41 (91.1)
Non-IDC 14 (7.7) 4 (8.9)

Clinical T stage 0.516
T1 10 (5.5) 2 (4.4)
T2 103 (56.9) 27 (60.0)
T3 42 (23.2) 13 (28.9)
T4 26 (14.4) 3 (6.7)

Clinical N stage 0.105
N1 34 (18.8) 3 (6.7)
N2 123 (68.0) 33 (73.3)
N3 24 (13.3) 9 (20.0)

Biologic subtype 0.199
ER-positive/HER2-negative 54 (29.8) 20 (44.4)
ER-positive/HER2-positive 42 (23.2) 7 (15.6)
ER-negative/HER2-positive 36 (19.9) 10 (22.2)
ER-negative/HER2-negative 49 (27.1) 8 (17.8)

Histologic grade 0.242
Grade 1 22 (12.2) 11 (24.4)
Grade 2 92 (50.8) 17 (37.8)
Grade 3 67 (37.0) 17 (37.8)

Ki-67, % 0.378
≥ 14 125 (69.1) 28 (62.2)
< 14 56 (30.9) 17 (37.8)

Primary tumor response at MRI 0.262
CR 45 (24.9) 15 (33.3)
Non-CR 136 (75.1) 30 (66.7)

ypT stage 0.193
T0 35 (19.3) 12 (26.7)
T1 72 (39.8) 21 (46.7)
T2 55 (30.4) 9 (20.0)
T3 16 (8.8) 1 (2.2)
T4 3 (1.7) 2 (4.4)

ypN stage 0.366
N0 94 (51.9) 29 (64.4)
N1 44 (24.3) 9 (20.0)
N2 27 (14.9) 3 (6.7)
N3 16 (8.8) 4 (8.9)

Table 1. Baseline Characteristics of the Training (n = 181) and 
Test (n = 45) Sets (continued)

Training Test P
Surgery method 0.897

Breast-conserving surgery 131 (72.4) 33 (73.3)
Mastectomy 50 (27.6) 12 (26.7)

Axillary surgery 0.209
Sentinel lymph node biopsy 90 (49.7) 29 (64.4)
Axillary lymph node dissection 34 (18.8) 6 (13.3)
Conversion to axillary lymph 

node dissection
57 (31.5) 10 (22.2)

Pre-NAC qualitative CT features
Number of suspicious lymph 

node (> 10)*
70 (38.7) 14 (31.1) 0.392

Eccentric cortex (positive 
compared with negative)

177 (97.8) 44 (97.8) 0.996

Loss of fatty hilum (positive 
compared with negative)

110 (60.8) 29 (64.4) 0.733

Round lymph node (positive 
compared with negative)

161 (89.0) 40 (88.9) 0.991

Heterogeneous enhancement 
(positive compared with 
negative)

108 (59.7) 29 (64.4) 0.612

Cortical irregularity (positive 
compared with negative)

142 (78.5) 35 (77.8) 0.922

Short-axis diameter of the 
largest lymph node, 
mm (> 15)*

48 (26.5) 16 (35.6) 0.268

Post-NAC qualitative CT features
Number of suspicious lymph 

node (> 2)*
40 (22.1) 13 (28.9) 0.332

Eccentric cortex (positive 
compared with negative)

83 (45.9) 26 (57.8) 0.183

Loss of fatty hilum (positive 
compared with negative)

48 (26.5) 12 (26.7) 0.984

Round lymph node (positive 
compared with negative)

61 (33.7) 15 (33.3) 0.963

Heterogeneous enhancement 
(positive compared with 
negative)

20 (11.0) 7 (15.6) 0.442

Cortical irregularity (positive 
compared with negative)

94 (51.9) 28 (62.2) 0.244

Short-axis diameter of the 
largest lymph node, mm (> 8)*

45 (24.9) 16 (35.6) 0.188

Values are presented as n (%) unless otherwise indicated. *The 
cutoff values for the number of suspicious lymph nodes and the 
short-axis diameter of the largest lymph node were calculated 
using receiver operating characteristic curve analysis. US = 
ultrasound, IDC = infiltrating ductal carcinoma, ER = estrogen 
receptor, HER2 = human epidermal growth factor receptor 2, MRI 
= magnetic resonance imaging, CR = complete response, NAC = 
neoadjuvant chemotherapy, CT = computed tomography
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CI, 1.603–3.515; P = 0.031) were significantly associated 
with residual nodal metastasis (Table 3). The diagnostic 
performances of the qualitative CT features of each reader 
are presented in Supplementary Table 2.

Inter-Reader Agreement
Moderate to almost perfect agreement was observed for 

categorical pre-NAC CT features (kappa range, 0.591–0.989); 
however, fair to substantial agreement was observed for 
categorical post-NAC CT features (range, 0.366–0.611). 
The ICCs of the number of suspicious LNs and the short-
axis diameter of the largest LN were excellent (range, 
0.958–0.995) for pre-NAC CT; however, they were moderate 

to excellent (range, 0.659–0.981) for post-NAC CT 
(Supplementary Table 3).

The mean ICCs of extracted radiomics features of 
intranodal and perinodal ROIs were 0.704 (SD, ± 0.240; 
range, 0.201–0.892) and 0.503 (SD, ± 0.320; range, 0.201–
0.833), respectively, for pre-NAC CT, indicating moderate 
agreement, and 0.728 (SD, ± 0.150; range, 0.508–0.879) 
and 0.785 (SD, ± 0.290; range, 0.204–0.948), respectively, 
for post-NAC CT, indicating good to moderate agreement. 

Diagnostic Performance of Predictive Models
The pre-NAC and post-NAC qualitative CT feature models 

yielded pooled AUCs of 0.686 (95% CI, 0.595–0.768) and 

Table 2. Clinicopathologic Factors Associated with Residual Axillary Nodal Metastasis in the Training Set

Variables
Univariable Analysis Multivariable Analysis

Odds Ratio 95% CI P
Adjusted Odds 

Ratio
95% CI P

Age, yr (≥ 50 compared with < 50) 0.526 0.290–0.954 0.034 0.722 0.321–1.623 0.430
Axillary nodal palpability 
  (positive compared with negative)

1.302 0.722–2.350 0.380

Lymphadenopathy on US 
  (positive compared with negative)

2.817 0.862–9.206 0.086 2.205 0.452–10.771 0.328

Clinical T stage
T1 Reference 

category
T2 0.654 0.174–2.454 0.529 NA NA NA 
T3 0.551 0.135–2.241 0.405 NA NA NA 
T4 0.571 0.130–2.524 0.459 NA NA NA 

Clinical N stage
N1 Reference 

category
Reference 
category

N2 1.538 0.707–3.345 0.277 2.978 0.868–10.219 0.083
N3 2.692 0.916–7.909 0.072 5.869 1.167–29.518 0.032

Biologic subtype
ER-positive/HER2-negative 9.412 3.727–23.768 < 0.001 8.367 2.336–29.962 0.001
ER-positive/HER2-positive 1.280 0.546–3.000 0.570 1.848 0.567–6.028 0.309
ER-negative/HER2-positive 0.627 0.241–1.633 0.340 0.729 0.225–2.357 0.597
ER-negative/HER2-negative Reference 

category
Reference 
category

Histologic grade
Grade 1 Reference 

category
Reference 
category

Grade 2 0.268 0.071–1.014 0.052 0.275 0.054–1.399 0.120
Grade 3 0.292 0.075–1.142 0.077 0.449 0.077–2.608 0.372

Ki-67, % (≥ 14 compared with < 14) 0.647 0.341–1.227 0.183
Primary tumor response at MRI 
  (CR compared with non-CR)

0.101 0.040–0.256 < 0.001 0.127 0.034–0.475 0.002

Table is based on training set of 181 patients. CI = confidence interval, US = ultrasound, ER = estrogen receptor, HER2 = human epidermal 
growth factor receptor 2, MRI = magnetic resonance imaging, CR = complete response, NA = not applicable
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0.642 (95% CI, 0.553–0.715), respectively, in the test set 
(Table 4). Three clinicopathologic factors (clinical N stage, 
biological subtype, and primary tumor response on MRI) were 
selected after implementing logistic regression analyses to 
develop the fusion models. The clinical-qualitative CT feature 
models of pre-NAC and post-NAC CT yielded AUCs of 0.689 
(95% CI, 0.598–0.771) and 0.740 (95% CI, 0.655–0.813), 
respectively, in the test set (Table 4). The AUCs of the fusion 
models were not significantly different from those of the 
qualitative CT feature models (all P > 0.05). The combined-
ROI models based on pre-NAC and post-NAC CT yielded 
AUCs of 0.828 (95% CI, 0.629–0.889) and 0.832 (95% CI, 
0.695–0.935), respectively, in the test set. The AUCs of the 
combined-ROI models were not significantly different from 
those of the intranodal or perinodal ROI models of the test 
set (all P > 0.05). The clinical-radiomics models of pre-NAC 
and post-NAC CT yielded AUCs of 0.835 (95% CI, 0.651–0.905) 
and 0.866 (95% CI, 0.702–0.927), respectively, in the test 
set; these values were not significantly higher than those 
of the combined-ROI models (all P > 0.05). The AUC of the 
combined-ROI model was significantly higher than that of 
the qualitative CT feature model of post-NAC CT (0.832 vs. 
0.642; P = 0.019) in the test set; however, other comparisons 

between predictive models did not yield statistically 
significant results (Fig. 4).

DISCUSSION

Our study demonstrated the capability of staging chest CT 
to identify axillary nodal responses after NAC for patients 
with clinically node-positive breast cancer. The predictive 
model based on a qualitative CT evaluation exhibited AUCs 
ranging from 0.642 to 0.740, and the radiomics-based 
machine learning model demonstrated AUCs ranging from 
0.750 to 0.832.

According to the ACR Appropriateness Criteria, US remains 
the most suitable modality for evaluating axillary nodal 
responses in the setting of NAC [31]. However, post-NAC 
axillary US is not routinely performed at all institutions. US 
evaluations are operator-dependent, and the interpretations 
are based on the size, location, and morphological changes 
of the LN, which are sometimes difficult to identify because 
of chemotherapy-induced changes. 

CT has not been recommended for primary nodal staging 
because of its moderate sensitivity and low specificity [32]. 
However, many clinicians refer to preoperative CT findings of 

Table 3. Pre-NAC and Post-NAC Qualitative CT Features Associated with Residual Axillary Nodal Metastasis in the Training Set

Variables
Univariable Analysis Multivariable Analysis

Odds Ratio 95% CI P
Adjusted 

Odds Ratio 
95% CI P

Pre-NAC
Eccentric cortex (positive compared with negative) 0.807 0.268–2.433 0.703 NA NA NA
Loss of fatty hilum (positive compared with negative) 1.245 0.881–1.760 0.214 NA NA NA
Round lymph node (positive compared with negative) 0.386 0.215–0.693 0.001 0.244 0.131–0.456 < 0.001
Heterogeneous enhancement (positive compared with negative) 1.200 0.851–1.692 0.297 NA NA NA
Cortical irregularity (positive compared with negative) 1.618 1.066–2.454 0.024 1.496 0.939–2.382 0.090
Number of suspicious lymph node (>10 compared with ≤ 10)* 1.519 1.073–2.150 0.018 1.467 0.999–2.152 0.050
Short axis diameter of the largest lymph node, 
  mm (> 15 compared with ≤ 15)*

2.258 1.522–3.350 0.703 2.133 1.397–3.256 < 0.001

Post-NAC
Eccentric cortex (positive compared with negative) 2.229 1.581–3.143 < 0.001 2.165 1.354–3.462 0.001
Loss of fatty hilum (positive compared with negative) 3.924 2.562–6.011 < 0.001 2.916 1.620–5.250 < 0.001
Round lymph node (positive compared with negative) 2.275 1.603–3.228 < 0.001 1.012 0.608–1.686 0.962
Heterogeneous enhancement (positive compared with negative) 4.032 2.469–6.583 < 0.001 1.933 1.063–3.515 0.031
Cortical irregularity (positive compared with negative) 1.895 1.347–2.667 < 0.001 0.687 0.399–1.183 0.176
Number of suspicious lymph node (> 2 compared with ≤ 2)* 0.990 0.707–1.386 0.952 NA NA NA
Short axis diameter of the largest lymph node, 
  mm (> 8 compared with ≤ 8)*

1.052 0.726–1.523 0.789 NA NA NA

Table is based on pooled results from three readers. *The cut-off values for the number of suspicious lymph nodes and the short-
axis diameter of the largest lymph node were calculated using receiver-operating characteristic curve analysis. NAC = neoadjuvant 
chemotherapy, CT = computed tomography, CI = confidence interval, NA = not applicable
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Table 4. Diagnostic Performance of the Predictive Models for Prediction of Residual Axillary Nodal Metastasis in the Test Set

CT Examination Model Sensitivity, % Specificity, % Accuracy, % AUC

Pre-NAC Qualitative CT feature* 59.6
(45.1, 73.0)

77.6
(65.8, 86.9)

69.8
(60.7, 77.8)

0.686
(0.595, 0.768)

Clinical-qualitative CT feature*† 55.8
(41.3, 69.5)

82.1
(70.8, 90.4)

70.6
(61.5, 78.6)

0.689
(0.598, 0.771)

Intranodal-ROI radiomics 74.1
(57.5, 90.6)

88.3
(66.1, 99.6)

77.8
(65.6, 89.9)

0.769
(0.665, 0.909)

Perinodal-ROI radiomics 77.8
(62.1, 93.5)

66.7
(44.9, 88.4)

73.3
(60.4, 86.3)

0.750
(0.585, 0.860)

Combined-ROI radiomics 74.1
(57.5, 90.6)

77.8
(58.6, 97.0)

75.6
(63.0, 88.1)

0.828
(0.629, 0.889)

Clinical-radiomics† 77.8
(62.1, 93.5)

77.8
(58.6, 97.0)

77.8
(65.6, 89.9)

0.835
(0.651, 0.905)

Post-NAC Qualitative CT feature* 44.4
(30.9, 58.6)

84.0
(73.7, 91.5)

67.4
(58.6, 75.4)

0.642
(0.553, 0.715)

Clinical-qualitative CT feature*† 66.7
(52.5, 78.9)

81.3
(70.7, 89.4)

75.2
(66.8, 82.4)

0.740
(0.655, 0.813)

Intranodal-ROI radiomics 81.5
(66.8, 96.1)

77.8
(58.6, 97.0)

80.0
(68.3, 91.7)

0.812
(0.673, 0.920)

Perinodal-ROI radiomics 74.1
(57.5, 90.6)

72.2
(51.5, 92.9)

73.3
(60.4, 86.3)

0.762
(0.596, 0.867)

Combined-ROI radiomics 85.2
(71.8, 98.6)

77.8
(58.6, 97.0)

82.2
(71.1, 93.4)

0.832
(0.695, 0.935)

Clinical-radiomics† 74.1
(57.5, 90.6)

88.9
(74.4, 97.4)

80.0
(68.3, 91.7)

0.866
(0.702, 0.927)

Numbers in parenthesis are 95% confidence intervals. *The qualitative computed tomography (CT) feature models and clinical-qualitative 
CT feature models were built based on the pooled results from three readers, †Three predictive clinicopathologic factors (Clinical N stage, 
biologic subtype, and primary tumor response at magnetic resonance imaging) were separately integrated into the qualitative CT feature 
model and combined-region of interest (ROI) model to build the fusion models (i.e., clinical-qualitative CT feature model and clinical-
radiomics model, respectively). AUC = area under the curve, NAC = neoadjuvant chemotherapy
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Fig. 4. Receiver-operating characteristic curve of the predictive model performances of pre-neoadjuvant chemotherapy (NAC) computed 
tomography (CT) (A) and post-NAC CT (B). With post-NAC CT, the area under the curve (AUC) of the combined-region of interest (ROI) 
model (*) was significantly greater than that of the qualitative CT feature model (0.832 vs. 0.642; P = 0.019). 
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axillary LNs because CT may indicate coincident localization 
of the LNs when the patient is in the supine position and 
enable the examination of regional LNs, including both 
axillae, internal mammary chain, and supraclavicular region. 
Although several studies have predicted the axillary nodal 
response to NAC using other imaging modalities (US, MRI, 
and PET/CT), the diagnostic performances of US, MRI, and 
PET/CT were unsatisfactory (accuracy: 65.1%, 60.2%, 
and 71.9%, respectively) [8,33]. You et al. [8] also 
demonstrated that, individually, US, MRI, and PET/CT could 
not be considered substitutes for SLNB to predict the nodal 
status, but that the combination of US, MRI, and PET/
CT improved the diagnostic performance compared to that 
of a single imaging modality [33]. Recently, multidetector 
row CT technology has facilitated short scan times and high 
spatial resolution, and it has exhibited potential as a useful 
imaging tool for predicting axillary LN metastasis in breast 
cancer patients [17,34]. To our knowledge, this study is the 
first to attempt to predict the axillary nodal response using 
staging chest CT without further laborious US examinations. 

We performed an in-depth imaging analysis of the hilum 
and cortex of the axillary LNs. However, this conventional 
imaging-based model showed equivocal pooled AUCs 
ranging from 0.642 to 0.740 and unsatisfactory inter-
reader agreement. Many small, normal LNs appear round, 
and reactive hyperplastic nodes may have long short-axis 
diameters and eccentric cortexes [35]. During this study, 
even round LN on pre-NAC CT were associated with a lower 
likelihood of residual nodal metastasis, which is inconsistent 
with the findings of previous studies that evaluated the 
LN status [11,34]. Using post-NAC CT, the evaluation of 
LNs is more limited because of the decreased size and 
chemotherapy-induced changes [36], which might increase 
the subjectivity of the visual evaluation and result in 
poorer inter-reader agreement. Our study confirmed that an 
eccentric cortex, loss of the fatty hilum, and heterogeneous 
enhancement on post-NAC CT were independent predictors 
of residual nodal metastasis. However, the accuracies of each 
feature were equivocal (59.9%–62.8%) and appeared to be 
biased toward reduced sensitivity (28.4%–61.0%) rather 
than specificity (58.8%–91.0%), which may lead to a high 
chance of missing residual metastases during a single-variate 
CT evaluation. Therefore, we used a combined radiomics and 
machine learning approach for the quantitative evaluation.

Among the radiomics models, the combined-ROI model 
showed the highest AUCs (0.828–0.832); furthermore, 
the combined-ROI model showed a significantly higher 

AUC than the qualitative post-NAC CT feature model. 
Although other comparisons of the qualitative CT feature 
models, radiomics models, and fusion models did not 
yield statistically significant results of the DeLong test, 
the radiomics models tended to show better performance 
than the qualitative CT feature models with or without 
fusion. Among the six radiomics features selected for the 
combined-ROI model, the three features that showed the 
highest significance were SmallDependenceLowGrayLevel
Emphasis (intranodal), DependenceEntropy (intranodal), 
and DependenceNonUniformity (perinodal), which were all 
Gray Level Dependence Matrix (GLDM) features. One study 
reported that GLDM features of axillary LN and tumor regions 
were remarkably correlated with immune cells and RNAs, 
and that they changed greatly after NAC, which may reflect 
changes in the tumor microenvironment [37]. We speculated 
that radiomics features have the advantage of providing 
more insight into microscopic environments than the 
qualitative methods of image analysis. 

During this study, the perinodal region measurement was 4 
mm, which was the smallest possible diameter because of the 
limitations of the software. However, this 4-mm extension 
might be relatively large considering the previous extranodal 
extension cutoff values reported in the literature, and it may 
have included a substantial amount of adjacent fat tissue 
[38]. This may have contributed to the lower performance of 
the perinodal region for predicting nodal responses. Further 
research is required to assess the feasibility of using the 
radiomics approach for the peritumoral region. 

Additionally, during this study, clinical N stage, 
biological subtype, and primary tumor response on MRI 
were significantly associated with the axillary nodal 
response, consistent with previous findings [3,7,39-41]. 
During previous studies, combinations of clinicopathologic 
factors and radiomics features achieved better predictive 
performance than models trained with clinicopathologic 
or radiomics features alone, indicating that the fusion 
model can be a more efficient and practical adjuvant tool 
for guiding clinical decisions [42,43]. However, the fusion 
model in this study did not show a significant statistical 
improvement in the predictive performance, possibly because 
of the small dataset. These results should be confirmed by 
future studies involving larger patient cohorts and further 
optimization of the predictive models. 

Our study had several limitations. First, this study was 
preliminary and not sufficiently designed to allow robust 
comparisons of the different models. A larger sample size is 
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required to confirm our results. Second, external validation 
tests were not conducted. Third, we did not individually match 
the pathologic results of axillary LNs with their positions on 
CT images. Instead, we performed qualitative and quantitative 
imaging analyses of all visible LNs, which were more clinically 
applicable. Additionally, we included follow-up information to 
determine the final status of the axilla because nonexcised 
metastatic LNs of those who underwent SLNB may have been 
missed. Fourth, only single lymphatic mapping using blue 
dye without preoperative localization was performed at 
our center, which may have influenced the false-negative 
rate of SLNB. Fifth, the sensitivity, specificity, and inter-
reader agreement of the independent qualitative CT features 
were low. However, CT features could be easily retrieved 
because of the patient’s supine position and global view of 
the axillae, and qualitative imaging assessments using CT 
features do not impose additional laborious procedures for 
radiologists and clinicians. During this study, we did not use 
MRI features to predict the axillary nodal response because 
it was beyond the scope of this investigation; however, 
previous studies using MRI features of axillary LNs have 
reported good diagnostic performance for predicting nodal 
responses [37,43]. To support the use of our approach, future 
studies should incorporate the CT and MRI features of axillary 
LNs. Sixth, although the CT effective dose during this study 
ranged from 5.6 to 9.6 mSv, similar to the average effective 
dose for standard chest CT [44,45], it may be inadvisable 
to consider chest CT as a routine monitoring tool for the 
axillary nodal response because of the hazardous effects of 
CT radiation. Further research is necessary to overcome the 
radiation hazards of CT so it can be adopted more widely as 
a monitoring tool. Finally, this was a retrospective study; 
therefore, selection bias could not be ruled out. Future 
prospective studies using multicenter patient data are 
warranted to validate our methodology.

In conclusion, the CT-based predictive models showed 
good diagnostic performance for predicting residual nodal 
metastasis after NAC. Quantitative radiomics analysis, 
especially with further optimization by its combination 
with clinicopathologic factors, may provide a higher level 
of performance than qualitative CT feature models and may 
allow better predictions and individualized assessments of 
the nodal burden and less aggressive axillary surgery. A larger 
multicenter study is required to confirm our results.
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