DOI QR코드

DOI QR Code

Assessment of Meningeal Lymphatics in the Parasagittal Dural Space: A Prospective Feasibility Study Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging

  • Bio Joo (Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine) ;
  • Mina Park (Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine) ;
  • Sung Jun Ahn (Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine) ;
  • Sang Hyun Suh (Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine)
  • Received : 2022.12.12
  • Accepted : 2023.02.27
  • Published : 2023.05.01

Abstract

Objective: Meningeal lymphatic vessels are predominantly located in the parasagittal dural space (PSD); these vessels drain interstitial fluids out of the brain and contribute to the glymphatic system. We aimed to investigate the ability of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in assessing the dynamic changes in the meningeal lymphatic vessels in PSD. Materials and Methods: Eighteen participants (26-71 years; male:female, 10:8), without neurological or psychiatric diseases, were prospectively enrolled and underwent DCE-MRI. Three regions of interests (ROIs) were placed on the PSD, superior sagittal sinus (SSS), and cortical vein. Early and delayed enhancement patterns and six kinetic curve-derived parameters were obtained and compared between the three ROIs. Moreover, the participants were grouped into the young (< 65 years; n = 9) or older (≥ 65 years; n = 9) groups. Enhancement patterns and kinetic curve-derived parameters in the PSD were compared between the two groups. Results: The PSD showed different enhancement patterns than the SSS and cortical veins (P < 0.001 and P < 0.001, respectively) in the early and delayed phases. The PSD showed slow early enhancement and a delayed wash-out pattern. The six kinetic curve-derived parameters of PSD was significantly different than that of the SSS and cortical vein. The PSD washout rate of older participants was significantly lower (median, 0.09; interquartile range [IQR], 0.01-0.15) than that of younger participants (median, 0.32; IQR, 0.07-0.45) (P = 0.040). Conclusion: This study shows that the dynamic changes of meningeal lymphatic vessels in PSD can be assessed with DCE-MRI, and the results are different from those of the venous structures. Our finding that delayed wash-out was more pronounced in the PSD of older participants suggests that aging may disturb the meningeal lymphatic drainage.

Keywords

Acknowledgement

We would like to thank In-seong Kim, PhD of Siemens Korea for his contribution in the protocol setting.

References

  1. Galea I, Bechmann I, Perry VH. What is immune privilege (not)? Trends Immunol 2007;28:12-18
  2. Carson MJ, Doose JM, Melchior B, Schmid CD, Ploix CC. CNS immune privilege: hiding in plain sight. Immunol Rev 2006;213:48-65
  3. Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 2015;212:991-999
  4. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015;523:337-341
  5. Ahn JH, Cho H, Kim JH, Kim SH, Ham JS, Park I, et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature 2019;572:62-66
  6. Absinta M, Ha SK, Nair G, Sati P, Luciano NJ, Palisoc M, et al. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. Elife 2017;6:e29738
  7. Visanji NP, Lang AE, Munoz DG. Lymphatic vasculature in human dural superior sagittal sinus: implications for neurodegenerative proteinopathies. Neurosci Lett 2018;665:18-21
  8. Goodman JR, Adham ZO, Woltjer RL, Lund AW, Iliff JJ. Characterization of dural sinus-associated lymphatic vasculature in human Alzheimer's dementia subjects. Brain Behav Immun 2018;73:34-40
  9. Louveau A, Plog BA, Antila S, Alitalo K, Nedergaard M, Kipnis J. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest 2017;127:3210-3219
  10. Hu J, Shen Y, Fahmy LM, Krishnamurthy S, Li J, Zhang L, et al. The role of the parenchymal vascular system in cerebrospinal fluid tracer clearance. Eur Radiol 2023;33:656-665
  11. Zhou Y, Cai J, Zhang W, Gong X, Yan S, Zhang K, et al. Impairment of the glymphatic pathway and putative meningeal lymphatic vessels in the aging human. Ann Neurol 2020;87:357-369
  12. Ringstad G, Eide PK. Cerebrospinal fluid tracer efflux to parasagittal dura in humans. Nat Commun 2020;11:354
  13. Eide PK, Ringstad G. Cerebrospinal fluid egress to human parasagittal dura and the impact of sleep deprivation. Brain Res 2021;1772:147669
  14. Halvorsen M, Edeklev CS, Fraser-Green J, Lovland G, Vatnehol SAS, Gjertsen O, et al. Off-label intrathecal use of gadobutrol: safety study and comparison of administration protocols. Neuroradiology 2021;63:51-61
  15. Filippopulos FM, Fischer TD, Seelos K, Dunker K, Belanovic B, Crispin A, et al. Semiquantitative 3T brain magnetic resonance imaging for dynamic visualization of the glymphatic-lymphatic fluid transport system in humans: a pilot study. Invest Radiol 2022;57:544-551
  16. Ding XB, Wang XX, Xia DH, Liu H, Tian HY, Fu Y, et al. Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson's disease. Nat Med 2021;27:411-418
  17. Petralia G, Summers PE, Agostini A, Ambrosini R, Cianci R, Cristel G, et al. Dynamic contrast-enhanced MRI in oncology: how we do it. Radiol Med 2020;125:1288-1300
  18. Rahbar H, Partridge SC. Multiparametric MR imaging of breast cancer. Magn Reson Imaging Clin N Am 2016;24:223-238
  19. Sung YS, Park B, Choi Y, Lim HS, Woo DC, Kim KW, et al. Dynamic contrast-enhanced MRI for oncology drug development. J Magn Reson Imagin 2016;44:251-264
  20. Gaddikeri S, Gaddikeri RS, Tailor T, Anzai Y. Dynamic contrast-enhanced MR imaging in head and neck cancer: techniques and clinical applications. AJNR Am J Neuroradiol 2016;37:588-595
  21. Albayram MS, Smith G, Tufan F, Tuna IS, Bostancikliog˘lu M, Zile M, et al. Non-invasive MR imaging of human brain lymphatic networks with connections to cervical lymph nodes. Nat Commun 2022;13:203
  22. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 2016;15:155-163
  23. Da Mesquita S, Louveau A, Vaccari A, Smirnov I, Cornelison RC, Kingsmore KM, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer's disease. Nature 2018;560:185-191
  24. Dai W, Yang M, Xia P, Xiao C, Huang S, Zhang Z, et al. A functional role of meningeal lymphatics in sex difference of stress susceptibility in mice. Nat Commun 2022;13:4825
  25. Jacob L, de Brito Neto J, Lenck S, Corcy C, Benbelkacem F, Geraldo LH, et al. Conserved meningeal lymphatic drainage circuits in mice and humans. J Exp Med 2022;219:e20220035
  26. Park M, Kim JW, Ahn SJ, Cha YJ, Suh SH. Aging is positively associated with peri-sinus lymphatic space volume: assessment using 3T black-blood MRI. J Clin Med 2020;9:3353
  27. Mack J, Squier W, Eastman JT. Anatomy and development of the meninges: implications for subdural collections and CSF circulation. Pediatr Radiol 2009;39:200-210
  28. Han H, Tao W, Zhang M. The dural entrance of cerebral bridging veins into the superior sagittal sinus: an anatomical comparison between cadavers and digital subtraction angiography. Neuroradiology 2007;49:169-175
  29. Fox RJ, Walji AH, Mielke B, Petruk KC, Aronyk KE. Anatomic details of intradural channels in the parasagittal dura: a possible pathway for flow of cerebrospinal fluid. Neurosurgery 1996;39:84-90; discussion 90-91
  30. Park M, Park JP, Kim SH, Cha YJ. Evaluation of dural channels in the human parasagittal dural space and dura mater. Ann Anat 2022;244:151974
  31. Da Mesquita S, Fu Z, Kipnis J. The meningeal lymphatic system: a new player in neurophysiology. Neuron 2018;100:375-388
  32. Ma Q, Ineichen BV, Detmar M, Proulx ST. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat Commun 2017;8:1434
  33. Hett K, McKnight CD, Eisma JJ, Elenberger J, Lindsey JS, Considine CM, et al. Parasagittal dural space and cerebrospinal fluid (CSF) flow across the lifespan in healthy adults. Fluids Barriers CNS 2022;19:24
  34. Shang T, Liang J, Kapron CM, Liu J. Pathophysiology of aged lymphatic vessels. Aging (Albany NY) 2019;11:6602-6613
  35. Zolla V, Nizamutdinova IT, Scharf B, Clement CC, Maejima D, Akl T, et al. Aging-related anatomical and biochemical changes in lymphatic collectors impair lymph transport, fluid homeostasis, and pathogen clearance. Aging Cell 2015;14:582-594
  36. Verheggen ICM, Van Boxtel MPJ, Verhey FRJ, Jansen JFA, Backes WH. Interaction between blood-brain barrier and glymphatic system in solute clearance. Neurosci Biobehav Rev 2018;90:26-33
  37. Mortensen KN, Sanggaard S, Mestre H, Lee H, Kostrikov S, Xavier ALR, et al. Impaired glymphatic transport in spontaneously hypertensive rats. J Neurosci 2019;39:6365-6377
  38. Tian Y, Zhao M, Chen Y, Yang M, Wang Y. The underlying role of the glymphatic system and meningeal lymphatic vessels in cerebral small vessel disease. Biomolecules 2022;12:748
  39. Kikuta J, Kamagata K, Takabayashi K, Taoka T, Yokota H, Andica C, et al. An investigation of water diffusivity changes along the perivascular space in elderly subjects with hypertension. AJNR Am J Neuroradiol 2022;43:48-55
  40. Zhang Y, Zhang R, Ye Y, Wang S, Jiaerken Y, Hong H, et al. The influence of demographics and vascular risk factors on glymphatic function measured by diffusion along perivascular space. Front Aging Neurosci 2021;13:693787