과제정보
Dr Zhao supported by K.C. Wong Education Foundation. Dr Tian and Zhao were supported by the 1,000 Talent program of Qinghai Province. We thank the editor and anonymous reviewers for their constructive comments. We greatly appreciate our collaborators for their assistance in sample collection.
참고문헌
- Hu XJ, Yang J, Xie XL, et al. The genome landscape of Tibetan sheep reveals adaptive introgression from argali and the history of early human settlements on the Qinghai-Tibetan Plateau. Mol Biol Evol 2019;36:283-303. https://doi.org/10.1093/molbev/msy208
- Zhao YX, Yang J, Lv FH, et al. Genomic reconstruction of the history of native sheep reveals the peopling patterns of nomads and the expansion of early pastoralism in East Asia. Mol Biol Evol 2017;34:2380-95. https://doi.org/10.1093/molbev/msx181
- Liu J, Ding X, Zeng Y, et al. Genetic diversity and phylogenetic evolution of Tibetan sheep based on mtDNA D-Loop sequences. PLoS One 2016;11:e0159308. https://doi.org/10.1371/journal.pone.0159308
- Du L, Li J, Ma N, et al. Animal genetic resources in china: sheep and goats. China National Commission of Animal Genetic Resources; 2011. pp. 317-21.
- Zeng XC, Chen HY, Hui WQ, Jia B, Du YC, Tian YZ. Genetic diversity measures of 8 local sheep breeds in northwest of China for genetic resource conservation. Asian-Australas J Anim Sci 2010;23:1552-6. https://doi.org/10.5713/ajas.2010.10132
- Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754-60. https://doi.org/10.1093/bioinformatics/btp324
- Van der Auwera GA, Carneiro MO, Hartl C, et al. From FastQ data to high-confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics 2013;43:11.10.1-33. https://doi.org/10.1002/0471250953.bi1110s43
- Yu Q, Ling Y, Xiong Y, et al. RAD-seq as an effective strategy for heterogenous variety identification in plants-a case study in Italian Ryegrass (Lolium multiflorum). BMC Plant Biol 2022;22:231. https://doi.org/10.1186/s12870-022-03617-6
- Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 2010;38:e164. https://doi.org/10.1093/nar/gkq603
- Chen K, Wallis JW, McLellan MD, et al. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Methods 2009;6:677-81. https://doi.org/10.1038/nmeth.1363
- Abyzov A, Urban AE, Snyder M, Gerstein M. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res 2011;21:974-84. https://doi.org/10.1101/gr.114876.110
- Guindon S, Dufayard JF, Lefort V, et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biol 2010;59:307-21. https://doi.org/10.1093/sysbio/syq010
- Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics 2000;155:945-59. https://doi.org/10.1093/genetics/155.2.945
- Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. Nat Genet 2000;25:25-9. https://doi.org/10.1038/75556
- Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000;28:27-30. https://doi.org/10.1093/nar/28.1.27
- Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4:44-57. https://doi.org/10.1038/nprot.2008.211
- Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinformatics 2007;23:1289-91. https://doi.org/10.1093/bioinformatics/btm091
- Gao X, Wang S, Wang YF, et al. Long read genome assemblies complemented by single cell RNA-sequencing reveal genetic and cellular mechanisms underlying the adaptive evolution of yak. Nat Commu 2022;13:4887. https://doi.org/10.1038/s41467-022-32164-9
- Yang JI, Li WR, Lv FH, et al. Whole-genome sequencing of native sheep provides insights into rapid adaptations to extreme environments. Mol Biol Evol 2016;33:2576-92. https://doi.org/10.1093/molbev/msw129
- Guo S, Wu X, Pei J, et al. Genome-wide CNV analysis reveals variants associated with high-altitude adaptation and meat traits in Qaidam cattle. Electron J Biotechnol 2021;54:8-16. https://doi.org/10.1016/j.ejbt.2021.07.006
- Liu X, Zhang Y, Li Y, et al. EPAS1 gain-of-function mutation contributes to high-altitude adaptation in Tibetan horses. Mol Biol Evol 2019;36:2591-603. https://doi.org/10.1093/molbev/msz158
- Guo W, Xin M, Wang Z, et al. Origin and adaptation to high altitude of Tibetan semi-wild wheat. Nat Commun 2020;11:5085. https://doi.org/10.1038/s41467-020-18738-5
- Xu SS, Li MH. Recent advances in understanding genetic variants associated with economically important traits in sheep (Ovis aries) revealed by high-throughput screening technologies. Front Agric Sci Eng 2017;4:279-88. https://doi.org/10.15302/J-FASE-2017151
- Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol 2020;21:268-83. https://doi.org/10.1038/s41580-020-0227-y
- Bernardi R, Guernah I, Jin D, et al. PML inhibits HIF-1α translation and neoangiogenesis through repression of mTOR. Nature 2006;442:779-85. https://doi.org/10.1038/nature05029
- Brugarolas J. Renal-cell carcinoma--molecular pathways and therapies. New Engl J Med 2007;356:185-7. https://doi.org/10.1056/NEJMe068263
- Thomas GV, Tran C, Mellinghoff IK, et al. Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat Med 2006;12:122-7. https://doi.org/10.1038/nm1337
- Edea Z, Dadi H, Dessie T, Kim KS. Genomic signatures of high-altitude adaptation in Ethiopian sheep populations. Genes Genomics 2019;41:973-81. https://doi.org/10.1007/s13258-019-00820-y
- Peng G, Wang Y, Ge P, et al. The HIF1α-PDGFD-PDGFRα axis controls glioblastoma growth at normoxia/mild-hypoxia and confers sensitivity to targeted therapy by echinomycin. J Exp Clin Cancer Res 2021;40:278. https://doi.org/10.1186/s13046-021-02082-7
- Wei C, Wang H, Liu G, et al. Genome-wide analysis reveals adaptation to high altitudes in Tibetan sheep. Sci Rep 2016;6:26770. https://doi.org/10.1038/srep26770
- Kim SH, Hwang SY, Yoon JT. Microarray-based analysis of the differential expression of melanin synthesis genes in dark and light-muzzle Korean cattle. PLoS One 2014;9:e96453. https://doi.org/10.1371/journal.pone.0096453
- Han J, Min Y, Guo T, et al. Molecular characterization of two candidate genes associated with coat color in Tibetan sheep (Ovis arise). J Integr Agric 2015;14:1390-7. https://doi.org/10.1016/S2095-3119(14)60928-X
- Mohammadi H, Moradi MH, Khaltabadi Farahani AH. Genome-wide association study and pathway analysis for identifying the genes associated with coat color in Lori-Bakhtiari sheep breed. Iranian J Anim Sci 2022;53:153-60. https://doi.org/10.22059/ijas.2022.329848.653846
- Guo J, Tao H, Li P, et al. Whole-genome sequencing reveals selection signatures associated with important traits in six goat breeds. Sci Rep 2018;8:10405. https://doi.org/10.1038/s41598-018-28719-w
- Saravanaperumal SA, Pallotti S, Pediconi D, Renieri C, La Terza A. Exon-1 skipping and intron-1 retaining by alternative splicing of the c-KIT gene encodes a novel splice variant in the skin of Merino sheep (Ovis aries). Mol Biol Rep 2021;48:4987-94. https://doi.org/10.1007/s11033-021-06486-8
- Yao L, Bao A, Hong W, et al. Transcriptome profiling analysis reveals key genes of different coat color in sheep skin. Peer J 2019;7:e8077. https://doi.org/10.7717/peerj.8077
- Rogers GE. Biology of the wool follicle: an excursion into a unique tissue interaction system waiting to be re-discovered. Exp Dermatol 2006;15:931-49. https://doi.org/10.1111/j.1600-0625.2006.00512.x
- Pöschl E, Schlötzer-Schrehardt U, Brachvogel B, Saito K, Ninomiya Y, Mayer U. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development 2004;131:1619-28. https://doi.org/10.1242/dev.01037
- Ge W, Wang SH, Sun B, et al. Melatonin promotes Cashmere goat (Capra hircus) secondary hair follicle growth: a view from integrated analysis of long non-coding and coding RNAs. Cell Cycle 2018;17:1255-67. https://doi.org/10.1080/15384101.2018.1471318
- Takao-Rikitsu E, Mochida S, Inoue E, et al. Physical and functional interaction of the active zone proteins, CAST, RIM1, and Bassoon, in neurotransmitter release. J Cell Biol 2004;164:301-11. https://doi.org/10.1083/jcb.200307101
- Dong Y, Zhang X, Xie M, et al. Reference genome of wild goat (Capra aegagrus) and sequencing of goat breeds provide insight into genic basis of goat domestication. BMC Genomics 2015;16:431. https://doi.org/10.1186/s12864-015-1606-1
- Mastrangelo S, Ben Jemaa S, Sottile G, et al. Combined approaches to identify genomic regions involved in phenotypic differentiation between low divergent breeds: Application in Sardinian sheep populations. J Anim Breed Genet 2019;136:526-34. https://doi.org/10.1111/jbg.12422
- Zhang Y, Wu K, Wang L, et al. Comparative study on seasonal hair follicle cycling by analysis of the transcriptomes from cashmere and milk goats. Genomics 2020;112:332-45. https://doi.org/10.1016/j.ygeno.2019.02.013
- Fu X, Zhao B, Tian K, et al. Integrated analysis of lncRNA and mRNA reveals novel insights into cashmere fineness in Tibetan cashmere goats. Peer J 2020;8:e10217. https://doi.org/10.7717/peerj.10217
- Kardos M, Luikart G, Bunch R, et al. Whole-genome rese-quencing uncovers molecular signatures of natural and sexual selection in wild bighorn sheep. Mol Ecol 2015;24:5616-32. https://doi.org/10.1111/mec.13415
- Johnston SE, McEwan JC, Pickering NK, et al. Genomewide association mapping identifies the genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep population. Mol Ecol 2011;20:2555-66. https://doi.org/10.1111/j.1365-294X.2011.05076.x
- Wiedemar N, Drogemuller C. A 1.8-kb insertion in the 3'-UTR of RXFP2 is associated with polledness in sheep. Anim Genet 2015;46:457-61. https://doi.org/10.1111/age.12309
- Wang X, Zhou G, Li Q, Zhao D, Chen Y. Discovery of SNPs in RXFP2 related to horn types in sheep. Small Rumin Res 2014;116:133-6. https://doi.org/10.1016/j.smallrumres.2013.10.022