DOI QR코드

DOI QR Code

Design of Test Site for Large-Scale Wind Turbine Performance Verification

초대형 풍력터빈 시험을 위한 실증시험장 설계

  • 김상만 ((사)에너지밸리산학융합원) ;
  • 정태윤 ((재)전남테크노파크) ;
  • 문채주 (국립목포대학교 전기및제어공학과)
  • Received : 2023.04.06
  • Accepted : 2023.06.17
  • Published : 2023.06.30

Abstract

This paper designs a wind turbine test site based on international regulations for the certification of wind turbine prototypes. The maximum height of the meteorological mast installed at the test site is 140m, and power facilities capable of testing up to three wind turbines of 5MW or more are installed. The weather resources measured at the mast can be recorded and analyzed using a monitoring system. Wind turbine manufacturers can use this test site during the certification period, and the installed wind turbines can be used for continuous power generation projects. Therefore, this test site can provide fundamental data for measuring the long-term performance and durability of wind turbines, which can be used to improve models or develop new wind turbines.

본 논문은 풍력터빈의 시제품 인증을 위한 국제 규정에 근거하여 풍력터빈 시험장을 설계하였다. 시험장에 설치되는 기상탑의 최대 높이는 140m이며, 5MW 이상 풍력터빈을 최대 3대까지 시험할 수 있는 전력설비가 구성되어 있다. 설치된 기상탑에서 측정한 기상자원은 감시시스템을 이용하여 기록 및 분석이 가능함을 확인하였다. 풍력터빈 제조업체는 이 시험장을 인증기간 동안 사용할 수 있고 설치된 풍력터빈은 지속적인 발전사업도 가능하다. 따라서, 장기적으로 풍력터빈의 성능 및 내구성을 측정하여 모델을 개량하거나 새로운 풍력터빈을 개발하기 위한 기초자료를 얻을 수 있다.

Keywords

References

  1. H. Jang, J. Park, Y. Park, and J. Park, "A Study on the Improvement of Domestic Wind Turbine Certification System," J. of the Korean Solar Energy Society, vol. 31, no. 6, 2011, pp. 125-131. https://doi.org/10.4174/jkss.2011.80.2.125
  2. C. Moon, Y. Chang, T. Park, M. Jeong, H. Joo, O. Kwon, D. Kwag, and G. Jeong, "A study on design of offshore meteorological tower," J. of the Korean Solar Energy Society, vol. 34, no. 2, 2014, pp. 60-65. https://doi.org/10.7836/kses.2014.34.2.060
  3. J. Lim, G. Ryu, H. Son, Y. Kim, and C. Moon, "A study on the optimal site selection by constraint mapping and park optimization for offshore wind farm in the southwest coastal area," J. of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 6, 2022, pp. 1145-1156.
  4. J. Choi and H. Choi, "Prediction of wind power generation using deep learnning," J. of the Korea Institute of Electronic Communication Sciences, vol. 16, no. 2, 2021, pp. 329-338.
  5. J. Kim, G. Ryu, Y. Kim, S. Kim, and C. Moon, "Selecting the geographical optimal safety site for offshore wind farms to reduce the risk of coastal disasters in the southwest coast of south korea," J. of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 5, 2022, pp. 1003-1012.
  6. S. Kim, G. Ryu, Y. Kim, and C. Moon, "Sensitivity analysis of wake diffusion patterns in mountainous wind farms according to wake model characteristics on computational fluid dynamics," J. of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 2, 2021, pp. 265-278.
  7. C. Moon, Y. Chang, S. So, T. Kim, Y. Kim, M. Jeong, and S. Jeong, "A study on development of test site for wind turbine prototype test," J. of the Korean Solar Energy Society, vol. 33, no. 2, 2013, pp. 101-107. https://doi.org/10.7836/kses.2013.33.2.101
  8. J. Kim, K. Oh, M. Kim, and K. Kim, "Evaluation and characterization of offshore wind resources with long-term met. mast data corrected by wind lidar," Renewable Energy, vol. 144, 2019, pp. 41-55. https://doi.org/10.1016/j.renene.2018.06.097
  9. IEC Standard 61400-12-1, Wind Tturbines Part 12-1:Power Performance Measurements of Electricity Producing Wind Turbines, 3rd Ed., 2005.
  10. IEC WT 01, IEC System for Conformity Testing and Certification of Wind Turbines, International Electrotechnical Commission, 2001.