DOI QR코드

DOI QR Code

Sustainable SCC with high volume recycled concrete aggregates and SCMs for improved mechanical and environmental performances

  • Zhanggen Guo (School of Civil Engineering, Nanjing Tech University) ;
  • Ling Zhou (School of Civil Engineering, Nanjing Tech University) ;
  • Qiansen Sun (School of Civil Engineering, Nanjing Tech University) ;
  • Zhiwei Gao (School of Civil Engineering, Nanjing Tech University) ;
  • Qinglong Miao (School of Civil Engineering, Nanjing Tech University) ;
  • Haixia Ding (School of Civil Engineering, Nanjing Tech University)
  • 투고 : 2023.03.14
  • 심사 : 2024.06.07
  • 발행 : 2023.12.25

초록

Using industrial wastes and construction and demolition (C&D) wastes is potentially advantageous for concrete production in terms of sustainability improvement. In this paper, a sustainable Self-Compacting Concrete (SCC) made with industrial wastes and C&D wastes was proposed by considerably replacing natural counterparts with recycled coarse aggregates (RCAs) and supplementary cementitious materials (SCMs) (i.e., Fly ash (FA), ground granulated blast furnace slag (GGBS) and silica fume (SF)). A total of 12 SCC mixes with various RCAs and different combination SCMs were prepared, which comprise binary, ternary and quaternary mixes. The mechanical properties in terms of compressive strength and static elasticity modulus of recycled aggregates (RA-SCC) mixes were determined and analyzed. Microstructural study was implemented to analyze the reason of improvement on mechanical properties. By means of life cycle assessment (LCA) method, the environmental impacts of RA-SCC with various RCAs and SCMs were quantified, analyzed and compared in the system boundary of "cradle-to-gate". In addition, the comparison of LCA results with respect to mechanical properties was conducted. The results demonstrate that the addition of proposed combination SCMs leads to significant improvement in mechanical properties of quaternary RA-SCC mixes with FA, GGBS and SF. Furthermore, quaternary RA-SCC mixes emit lowest environmental burdens without compromising mechanical properties. Thus, using the combination of FA, GGBS and SF as cement substitution to manufacture RA-SCC significantly improves the sustainability of SCC by minimizing the depletion of cement and non-renewable natural resources.

키워드

참고문헌

  1. ACI Committee 318-11 (2011), Building code requirements for structural concrete and commentary (ACI 318-11); American Concrete Institute, Detroit, MI, USA.
  2. Adekunle, S., Ahmad, S., Maslehuddin, M. and Al-Gahtani, H.J. (2015), "Properties of SCC prepared using natural pozzolana and industrial wastes as mineral fillers", Cem. Concrete Compos., 62, 125-133. https://doi.org/10.1016/j.cemconcomp.2015.06.001
  3. AzariJafari, H., Amiri, M.J.T., Ashrafian, A., Rasekh, H., Barforooshi, M.J. and Berenjian, J. (2019). "Ternary blended cement: An eco-friendly alternative to improve resistivity of high-performance self-consolidating concrete against elevated temperature", J. Clean. Product., 223, 575-586. https://doi.org/10.1016/j.jclepro.2019.03.054
  4. Campos, R.S., Barbosa, M.P., Pimentel, L.L. and Maciel, G.D.F. (2018), "Influence of recycled aggregates on rheological and mechanical properties of self-compacting concrete", Rev. Mater., 23(1). https://doi.org/10.1590/S1517-707620170001.0300
  5. Celik, K., Meral, C., Gursel, A.P., Mehta, P.K., Horvath, A. and Monteiro, P.J. (2015), "Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended Portland cements containing fly ash and limestone powder", Cem. Concrete Compos., 56, 59-72. https://doi.org/10.1016/j.cemconcomp.2014.11.003
  6. Chen, X., Wang, H., Najm, H., Venkiteela, G. and Hencken, J. (2019), "Evaluating engineering properties and environmental impact of pervious concrete with fly ash and slag", J. Clean. Product., 237, 117714. https://doi.org/10.1016/j.jclepro.2019.117714
  7. China Concrete & Cement-based Products Association (2019), Report on economic operation of concrete and cement products industry in the first half of 2019; China. http://www.ccpa.com.cn/ccpa/content/0-10173324689409.html
  8. Chinese Standard (2006), JGJ 52-2006. Standard for Technical Requirements and Test Method of Sand and Crushed Stone (Or Gravel) for Ordinary Concrete: Chinese Building Press, Beijing, China.
  9. CLCD (2012), Chinese Life Cycle Database (CLCD); Integrated Knowledge for Our Environment (IKE): Sichuan University, Sichuan, China.
  10. CNMLCA (2010), Material Life Cycle Assessment Database; China Centre of National Material Life Cycle Assessment (CNMLCA): Beijing University of Technology (BJUT), Beijing, China.
  11. Ding, T., Xiao, J. and Tam, V.W. (2016), "A closed-loop life cycle assessment of recycled aggregate concrete utilization in China", Waste Manage., 56, 367-375. https://doi.org/10.1016/j.wasman.2016.05.031
  12. Djamila, B., Othmane, B., Said, K. and El-Hadj, K. (2018), "Combined effect of mineral admixture and curing temperature on mechanical behavior and porosity of SCC", Adv. Concrete Constr., Int. J., 6(1), 69-85. https://doi.org/10.12989/acc.2018.6.1.069
  13. Dossche, C., Boel, V. and De Corte, W. (2018), "Comparative material-based life cycle analysis of structural beam-floor systems", J. Clean. Product., 194, 327-341. https://doi.org/10.1016/j.jclepro.2018.05.062
  14. EN 1992-1-1 (2004), Eurocode 2: Design of Concrete Structures - Part 1-1: General Rules and Rules for Buildings, CEN, Brussels, Belgium.
  15. Estanqueiro, B., Dinis Silvestre, J., de Brito, J. and Duarte Pinheiro, M. (2018), "Environmental life cycle assessment of coarse natural and recycled aggregates for concrete", Eur. J. Environ. Civil Eng., 22, 429-449. https://doi.org/10.1080/19648189.2016.1197161
  16. Fayed, S., Madenci, E., Ozkilic, Y.O. and Mansour, W. (2023), "Improving bond performance of ribbed steel bars embedded in recycled aggregate concrete using steel mesh fabric confinement", Constr. Build. Mater., 369, 130452. https://doi.org/10.1016/j.conbuildmat.2023.130452
  17. Fiol, F., Thomas, C., Munoz, C., Ortega-Lopez, V. and Manso, J.M. (2018), "The influence of recycled aggregates from precast elements on the mechanical properties of structural self-compacting concrete", Construct. Build. Mater., 182, 309-323. https://doi.org/10.1016/j.conbuildmat.2018.06.132
  18. Gayarre, F.L., Perez, J.G., Perez, C.L.C., Lopez, M.S. and Martinez, A.L. (2016), "Life cycle assessment for concrete kerbs manufactured with recycled aggregates", J. Clean. Product., 113, 41-53. https://doi.org/10.1016/j.jclepro.2015.11.093
  19. Guo, Z., Tu, A., Chen, C. and Lehman, D.E. (2018), "Mechanical properties, durability, and life-cycle assessment of concrete building blocks incorporating recycled concrete aggregates", J. Clean. Product., 199, 136-149. https://doi.org/10.1016/j.jclepro.2018.07.069
  20. Gursel, A.P., Maryman, H. and Ostertag, C. (2016), "A life-cycle approach to environmental, mechanical, and durability properties of "green" concrete mixes with rice husk ash", J. Clean. Product., 112, 823-836. https://doi.org/10.1016/j.jclepro.2015.06.029
  21. Hu, Y.Y. (2018), "China gravel industry in transition-talk on the future development trend of the industry", China Build Mater., 07, 6-38. [In Chinese] https://doi.org/10.16291/j.cnki.zgjc.2018.07.011
  22. ISO14040 (2016), Environmental management life cycle assessment, in: Principles and Framework, International Organization of Standardization, Geneva, Switzerland.
  23. ISO14044 (2016), Environmental management life cycle assessment, in: Requirements and Guidelines, International Organization of Standardization, Geneva, Switzerland.
  24. Kurda, R., Silvestre, J.D. and de Brito, J. (2018), "Life cycle assessment of concrete made with high volume of recycled concrete aggregates and fly ash", Resour. Conserv. Recy., 139, 407-417. https://doi.org/10.1016/j.resconrec.2018.07.004
  25. Kurda, R., de Brito, J. and Silvestre, J.D. (2020), "A comparative study of the mechanical and life cycle assessment of high-content fly ash and recycled aggregates concrete", J. Build. Eng., 29, 101173. https://doi.org/10.1016/j.jobe.2020.101173
  26. Kurtoglu, A.E., Alzeebaree, R., Aljumaili, O., Nis, A., Gulsan, M.E., Humur, G. and Cevik, A. (2018), "Mechanical and durability properties of fly ash and slag based geopolymer concrete", Adv. Concrete Constr., Int. J., 6(4), 345-362. https://doi.org/10.12989/acc.2018.6.4.345
  27. Li, J., Zhang, W., Li, C. and Monteiro, P.J. (2019), "Green concrete containing diatomaceous earth and limestone: Workability, mechanical properties, and life-cycle assessment", J. Clean. Product., 223, 662-679. https://doi.org/10.1016/j.jclepro.2019.03.077
  28. Liu, B., Wu, X., Shi, J., Wu, X., Jiang, J. and Qin, J. (2020), "Effect of cement as mineral filler on the performance development of emulsified asphalt concrete", Adv. Concrete Constr., Int. J., 10(6), 515-526. https://doi.org/10.12989/acc.2020.10.6.515
  29. Lovecchio, N., Shaikh, F., Rosano, M., Ceravolo, R. and Biswas, W. (2020), "Environmental assessment of supplementary cementitious materials and engineered nanomaterials concrete", AIMS Environ. Sci., 07, 13-30. https://doi.org/10.3934/environsci.2020002
  30. Mansour, W. and Fayed, S. (2021), "Flexural rigidity and ductility of RC beams reinforced with steel and recycled plastic fibers", Steel Compos. Struct., Int. J., 41(3), 317-334. https://doi.org/10.12989/scs.2021.41.3.317
  31. Manzi, S., Mazzotti, C. and Bignozzi, M.C. (2017), "Self-compacting concrete with recycled concrete aggregate: study of the long-term properties", Construct. Build. Mater., 157, 582-590. https://doi.org/10.1016/j.conbuildmat.2017.09.129
  32. Miller, S.A. (2018), "Supplementary cementitious materials to mitigate greenhouse gas emissions from concrete: can there be too much of a good thing?", J. Clean. Product., 178, 587-598. https://doi.org/10.1016/j.jclepro.2018.01.008
  33. Oliveira, L.S., Pacca, S.A. and John, V.M. (2016), "Variability in the life cycle of concrete block CO2 emissions and cumulative energy demand in the Brazilian market", Constr. Build. Mater., 114, 588-594. https://doi.org/10.1016/j.conbuildmat.2016.03.134
  34. Pereira-de Oliveira, L.A., Nepomuceno, M. and Rangel, M. (2013), "An eco-friendly self-compacting concrete with recycled coarse aggregates", Inf. Constr., 65(EXTRA 1), 31-41. https://doi.org/10.3989/ic.11.138
  35. Pradhan, S., Tiwari, B.R., Kumar, S. and Barai, S.V. (2019), "Comparative LCA of recycled and natural aggregate concrete using Particle Packing Method and conventional method of design mix", J. Clean. Product., 228, 679-691. https://doi.org/10.1016/j.jclepro.2019.04.328
  36. Rajhans, P., Panda, S.K. and Nayak, S. (2018a), "Sustainability on durability of self compacting concrete from C&D waste by improving porosity and hydrated compounds: A microstructural investigation", Constr. Build. Mater., 559-575. https://doi.org/10.1016/j.conbuildmat.2018.04.137
  37. Rajhans, P., Panda, S.K. and Nayak, S. (2018b), "Sustainable self compacting concrete from C&D waste by improving the microstructures of concrete ITZ", Constr. Build. Mater., 557-570. https://doi.org/10.1016/j.conbuildmat.2017.12.132
  38. Salesa, A., Perez-Benedicto, J.A., Esteban, L.M., Vicente-Vas, R. and Orna-Carmona, M. (2017), "Physico-mechanical properties of multi-recycled self-compacting concrete prepared with precast concrete rejects", Construct. Build. Mater., 153, 364-373. https://doi.org/10.1016/j.conbuildmat.2017.07.087
  39. Santos, S.A., Da Silva, P.R. and De Brito, J. (2017), "Mechanical performance evaluation of self-compacting concrete with fine and coarse recycled aggregates from the precast industry", Mater., 10(8) p. 904. https://doi.org/10.3390/ma10080904
  40. Singh, M., Choudhary, K., Srivastava, A., Sangwan, K.S. and Bhunia, D. (2017), "A study on environmental and economic impacts of using waste marble powder in concrete", J. Build. Eng., 13, 87-95. http://dx.doi.org/10.1016/j.jobe.2017.07.009
  41. Tabatabaei, J. (2019), "The effect of TiO2 nanoparticles in reduction of environmental pollution in concrete structures", Adv. Concrete Constr., Int. J., 7(2), 127-129. https://doi.org/10.12989/acc.2019.7.2.127
  42. Tang, W.C., Ryan, P.C., Cui, H.Z. and Liao, W. (2016), "Properties of self-compacting concrete with recycled coarse aggregate", Adv. Mater. Sci. Eng., 2016(1), p. 2761294. https://doi.org/ 10.1155/2016/2761294
  43. Teh, S.H., Wiedmann, T., Castel, A. and de Burgh, J. (2017), "Hybrid life cycle assessment of greenhouse gas emissions from cement, concrete and geopolymer concrete in Australia", J. Clean. Product.,152, 312-320. https://doi.org/10.1016/j.jclepro.2017.03.122
  44. Teh, S.H., Wiedmann, T. and Moore, S. (2018), "Mixed-unit hybrid life cycle assessment applied to the recycling of construction materials", J. Econ. Struct., 7, 1-25. https://doi.org/10.1186/s40008-018-0112-4
  45. Teixeira, E.R., Mateus, R., Camoes, A.F., Braganca, L. and Branco, F.G. (2016), "Comparative environmental life-cycle analysis of concretes using biomass and coal fly ashes as partial cement replacement material", J. Clean. Product., 112, 2221-2230. https://doi.org/10.1016/j.jclepro.2015.09.124
  46. Vieira, D.R., Calmon, J.L. and Coelho, F.Z. (2016), "Life cycle assessment (LCA) applied to the manufacturing of common and ecological concrete: A review", Constr. Build. Mater., 124, 656-666. https://doi.org/10.1016/j.conbuildmat.2016.07.125
  47. Xiao, J., Wang, C., Ding, T. and Akbarnezhad, A. (2016), "A recycled aggregate concrete high-rise building: Structural performance and embodied carbon footprint", J. Clean. Product., 112, 2221-2230. https://doi.org/10.1016/j.jclepro.2018.07.210
  48. Zhang, Y., Luo, W., Wang, J., Wang, Y., Xu, Y. and Xiao, J. (2019), "A review of life cycle assessment of recycled aggregate concrete", Constr. Build. Mater., 209, 115-125. https://doi.org/10.1016/j.conbuildmat.2019.03.078