DOI QR코드

DOI QR Code

Mechanical properties of steel-polypropylene fiber reinforced fully recycled coarse aggregate concrete

  • Weiwei Su (College of Civil Engineering and Architecture, Guangxi University) ;
  • Zongping Chen (College of Civil Engineering and Architecture, Guangxi University) ;
  • Haoyu Liao (College of Civil Engineering and Architecture, Guangxi University) ;
  • Dingyuan Liu (Civil Engineering Department, Guangxi Technological College of Machinery and Electricity) ;
  • Xingyu Zhou (College of Civil Engineering and Architecture, Guangxi University)
  • Received : 2021.09.27
  • Accepted : 2023.11.07
  • Published : 2023.09.25

Abstract

In this study, the steel fiber and the polypropylene fiber were used to enhance the mechanical properties of fully recycled coarse aggregate concrete. Natural crushed stone was replaced with recycled coarse aggregate at 100% by volume. The steel fiber and polypropylene fiber were used as additive material by incorporating into the mixture. In this test two parameters were considered: (a) steel fiber volume ratio (i.e., 0%, 1%, 1.5%, 2%), (b) polypropylene fiber volume ratio (i.e., 0%, 0.1%, 0.15%, 0.2%). The results showed that compared with no fiber, the integrity of cubes or cylinders mixed with fibers after failure was better. When the volume ratio of steel fiber was 1~2%, the width of mid-span crack after flexural failure was 5~8 mm. In addition, when the volume ratio of polypropylene fiber was 0.15%, with the increase of steel fiber content, the static elastic modulus and toughness of axial compression first increased and then decreased, and the flexural strength increased, with a range of 6.5%~20.3%. Besides, when the volume ratio of steel fiber was 1.5%, with the increase of polypropylene fiber content, the static elastic modulus decreased, with a range of 7.0%~10.5%. The ratio of axial compression toughness first increased and then decreased, with a range of 2.2%~8.7%. The flexural strength decreased, with a range of 2.7%~12.6%. On the other hand, the calculation formula of static elastic modulus and cube compressive strength of fully recycled coarse aggregate with steel-polypropylene fiber was fitted, and the optimal fiber content within the scope of the test were put forward.

Keywords

Acknowledgement

The authors acknowledge the financial support from National Natural Science Foundation (NSFC) of PR China (No. 51578163) and The Central Government to Guide Local Scientific and Technological Development (Guike ZY21195010). They would also like to thank for Guangxi Science and Technology Base and Talent Special Project (AD21075031) and the counterpart aid project for discipline construction from Guangxi University (Grant No. 2023N01).

References

  1. Akpinar, P. and Al Attar, H. (2021), "A case study on the viability of using increased quantities of recycled concrete aggregates in structural concrete for extending environmental conservation in North Cyprus", Environ. Earth Sci., 80(9), 367. https://doi.org/10.1007/s12665-021-09655-x 
  2. Barros, J.A., Lourenco, L.A., Soltanzadeh, F. and Taheri, M. (2013), "Steel fibre reinforced concrete for elements failing in bending and in shear", Adv. Concrete Constr., Int. J., 1(1), 1-27. https://doi.org/10.12989/acc.2013.1.1.001 
  3. Chen, Z.P., Xu, J.J., Zheng, H.H., Su, Y.S., Xue, J.Y. and Li, J.T. (2013), "Basic mechanical properties test and stress-strain constitutive relations of recycled coarse aggregate concrete", J. Build. Mater., 16(1), 24-32. 
  4. Chen, T.W., Wu, J. and Dong, G.Q. (2021), "Mechanical properties and uniaxial compression stress-strain relation of recycled coarse aggregate concrete after carbonation", Materials, 14(9), 2215. https://doi.org/10.3390/ma14092215 
  5. Du, Y.B., Zhao, Z.Q. and Xiao, Q. Shi, F.T. and Yang, J.M. (2021), "Experimental study on the mechanical properties and compression size effect of recycled aggregate concrete", Materials, 14(9), 2323. https://doi.org/10.3390/ma14092323 
  6. Fan, Y.H., Niu, H.C. and Zhang, X.G. (2020), "Study on creep test of recycled coarse aggregate concrete and influence mechanism of old mortar", J. Build. Mater., 23(3), 596-602. 
  7. Ganesan, N., Indira, P.V. and Santhakumar, A. (2013), "Engineering properties of steel fibre reinforced geopolymer concrete", Adv. Concrete Constr., Int. J., 1(4), 305-318. https://doi.org/10.12989/acc2013.1.4.305 
  8. Geng, Y., Wang, Q.H., Wang, Y.Y. and Zhang, H. (2019), "Influence of service time of recycled coarse aggregate on the mechanical properties of recycled aggregate concrete", Mater. Struct., 52(5), 1-16. https://doi.org/10.1617/s11527-019-1395-0 
  9. Gonzalez-Fonteboa, B., Martinez-Abella, F., Eiras-Lopez, J. and Seara-Paz, S. (2011), "Effect of recycled coarse aggregate on damage of recycled concrete", Mater. Struct., 44(10), 1759-1771. https://doi.org/10.1617/s11527-011-9736-7 
  10. Javahershenas, F., Gilani, M.S. and Hajforoush, M. (2021), "Effect of magnetic field exposure time on mechanical and microstructure properties of steel fiber-reinforced concrete (SFRC)", J. Build. Eng., 35, 101975. https://doi.org/10.1016/j.jobe.2020.101975 
  11. Li, X.Z., Wang, Q.H., Wang Y.Y. and Zhang, H. (2019), "Influence factors and prediction methods for flexural strength of recycled aggregate concrete", J. Build. Struct., 40(1), 155-164. https://doi.org/10.14006/j.jzjgxb.2019.01.018 
  12. Li, X.J., Zhang, Y.Y., Shi, C. and Chen, X.D. (2020), "Experimental and numerical study on tensile strength and failure pattern of high performance steel fiber reinforced concrete under dynamic splitting tension", Constr. Build. Mater., 259, 119796. https://doi.org/10.1016/j.conbuildmat.2020.119796 
  13. Li, L., Xuan, D.X., Sojobi, A.O., Liu, S.H., Chu, S.H. and Poon, C.S. (2021), "Development of nano-silica treatment methods to enhance recycled aggregate concrete", Cement Concrete Compos., 118, 103963. https://doi.org/10.1016/j.cemconcomp.2021.103963 
  14. Liang, N.H., Liu, X.R. and Sun, J. (2012), "Uniaxial tensile test of multi-scale polypropylene fiber reinforced concrete", J. Chongqing Univ. Natural Science Edition, 35(6), 80-84. 
  15. Liang, C.F., Xiao, J.Z., Wang, C.H., Ma, Z.M. and He, Z.H. (2021), "Frequency-dependent damping properties of recycled aggregate concrete", J. Mater. Civil Eng., 33(7), 04021160. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003742 
  16. Liu, X., Wu, J., Zhao X., Yan, P.P. and Ji, W.Y. (2021), "Effect of brick waste content on mechanical properties of mixed recycled concrete", Constr. Build. Mater., 292, 123320. https://doi.org/10.1016/j.conbuildmat.2021.123320 
  17. Luo, X.H. (2020), "Mechanical properties of steel fiber reinforced concrete material in construction of road bridge deck", Bridge Struct., 16(4), 169-176. https://doi.org/10.3233/BRS-200180 
  18. Ma, H., Bai, H.Y., Zhao, Y.L., Liu, Y.H. and Zhang, P. (2019), "Compressive performance of RAC filled GFRP tube-profile steel composite columns under axial loads", Adv. Concrete Constr., Int. J., 8(4), 335-349. https://doi.org/10.12989/acc.2019.8.4.335 
  19. Mansour, R., El Abidine, R.Z. and Brahim, B. (2017), "Performance of polymer concrete incorporating waste marble and alfa fibers", Adv. Concrete Constr., Int. J., 5(4), 331-343. https://doi.org/10.12989/acc.2017.5.4.331 
  20. Mao, Y.G., Liu, J.H. and Shi, C.J. (2021), "Autogenous shrinkage and drying shrinkage of recycled aggregate concrete: A review", J. Cleaner Product., 295, 126435. https://doi.org/10.1016/j.jclepro.2021.126435 
  21. Meng, D., Wu, X.M., Quan, H.Z. and Zhu, C.J. (2021a), "A strength-based mix design method for recycled aggregate concrete and consequent durability performance", Constr. Build. Mater., 281, 122616. https://doi.org/10.1016/j.conbuildmat.2021.122616 
  22. Meng, G.W., Wu, B., Xu, S.X. and Huang, J.S. (2021b), "Modelling and experimental validation of flexural tensile properties of steel fiber reinforced concrete", Constr. Build. Mater., 273, 121974. https://doi.org/10.1016/j.conbuildmat.2020.74 
  23. Mukharjee, B.B. and Barai, S.V. (2019), "Performance assessment of nano-Silica incorporated recycled aggregate concrete", Adv. Concrete Constr., Int. J., 8(4), 321-333. https://doi.org/10.12989/acc.2019.8.4.321 
  24. Nandanam, K., Biswal, U.S. and Dinakar, P. (2021), "Effect of fly ash, GGBS, and metakaolin on mechanical and durability properties of self-compacting concrete made with 100% coarse recycled aggregate", J. Hazard. Toxic Radioact. Waste, 25(2), 04021002. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000595 
  25. Nuaklong, P., Wongsa, A., Boonserm, K., Ngohpok, C., Jongvivatsakul, P., Sata, V., Sukontasukkul, P. and Chindaprasirt, P. (2021), "Enhancement of mechanical properties of fly ash geopolymer containing fine recycled concrete aggregate with micro carbon fiber", J. Build. Eng., 41, 102403. https://doi.org/10.1016/j.jobe.2021.102403 
  26. Rais, M.S. and Khan, R.A. (2021), "Effect of biomineralization technique on the strength and durability characteristics of recycled aggregate concrete", Constr. Build. Mater., 290, 123280. https://doi.org/10.1016/j.conbuildmat.2021.123280 
  27. Shaikh, F., Kerai, S. and Kerai, S. (2015), "Effect of micro-silica on mechanical and durability properties of high volume fly ash recycled aggregate concretes (HVFA-RAC)", Adv. Concrete Constr., Int. J., 3(4), 317-331. http://dx.doi.org/10.12989/acc.2015.3.4.317 
  28. Shi, C.J., Cao, Z.J. and Xie, Z.B. (2016), "Research progress in the mechanical properties of recycled aggregate concrete", Mater. Rev., 30(23), 96-103. 
  29. Song, X.B., Li, C.Z., Chen, D.D. and Gu, X.L. (2021), "Interfacial mechanical properties of recycled aggregate concrete reinforced by nano-materials", Constr. Build. Mater., 270, 121446. https://doi.org/10.1016/j.conbuildmat.2020.121446 
  30. The State Standard of China (2010), Standard test methods for fiber reinforced concrete, (CECS 13:2009), China Planning Press, Beijing, China.
  31. The State Standard of China (2011), Code for design of concrete structures, (GB 50010-2010), China Building Industry Press, Beijing, China.
  32. The State Standard of China (2012a), Pebble and crushed stone for construction, (GB/T 14685-2011), China Standard Press, Beijing, China.
  33. The State Standard of China (2012b), Sand for construction, (GB/T 14684-2011), China Standard Press, Beijing, China.
  34. The State Standard of China (2015), Steel fiber reinforced concrete, (JG/T 472-2015), China Building Industry Press, Beijing, China. 
  35. The State Standard of China (2017), Standard for test method of performance on ordinary fresh concrete, (GB/T 50080-2016), China Building Industry Press, Beijing, China. 
  36. The State Standard of China (2019), Standard for test methods of concrete physical and mechanical properties, (GB/T 50081-2019), China Building Industry Press, Beijing, China. 
  37. Trottier, C., Zahedi, A., Ziapour, R. and Sanchez, L. (2020), "Microscopic assessment of recycled concrete aggregate (RCA) mixtures affected by alkali-silica reaction (ASR)", Constr. Build. Mater., 269, 121250. https://doi.org/10.1016/j.conbuildmat.2020.121250 
  38. Yan, W.J., Niu, F.J., Wu, Z.J., Niu, F.H., Lin, Z.J and Ning, Z.J. (2016), "Mechanical property of polypropylene fiber reinforced concrete under freezing-thawing cycle effect", J. Traffic Transport. Eng., 16(4), 37-44. http://dx.doi.org/10.19818/j.cnki.1671-1637.2016.04.004 
  39. Ye, Y.X., Wang, Z.B., Xie, F.L., Fu, C.H. and Zhang, Z.Y. (2021), "Mechanical properties of steel fiber reinforced high-strength lightweight aggregate concrete", J. Build. Mater., 24(1), 63-70. 
  40. Zhang, J.K., Shi, C.J., Li, Y.K., Pan, X.Y., Poon, C.S. and Xie, Z.B. (2015), "Performance Enhancement of Recycled Concrete Aggregates through Carbonation", J. Mater. Civil Eng., 27(11), 04015029. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001296 
  41. Zhou, C.H., Cai, L.P., Chen Z.P. and Li, J.H. (2020), "Effect of kenaf fiber on mechanical properties of high-strength cement composites", Constr. Build. Mater., 263, 121007. https://doi.org/10.1016/j.conbuildmat.2020.121007