Acknowledgement
This work is supported by the National Natural Science Foundation of China (No. 12102428, No. 11502099, No. 11802001 and No. 11472008), the Fundamental Research Funds for the Central Universities (WK2090000019), Open Research Fund Program of State Key Laboratory of Water Resources and Hydropower Engineering Science (2018SGG02). Suzhou science and technology Bureau (SS2019018) and Zhangjiagang science and technology Bureau (ZKS2001). The authors declare that they have no conflict of interest.
References
- ACI Committee (2008), Building code requirements for structural concrete (ACI 318-08) and commentary. American Concrete Institute.
- Al-Rawi, S. and Taysi, N. (2018), "Performance of selfcompacting geopolymer concrete with and without GGBFS and steel fiber", Adv. Concrete Constr., Int. J., 6(4), 323-344. https://doi.org/10.12989/acc.2018.6.4.323
- Almusallam, T.H., Siddiqui, N.A., Iqbal, R.A. and Abbas, H. (2013), "Response of hybrid-fiber reinforced concrete slabs to hard projectile impact", Int. J. Impact Eng., 58, 17-30. https://doi.org/10.1016/j.ijimpeng.2013.02.005
- Almusallam, T.H., Abadel, A.A., Al-Salloum, Y.A., Siddiqui, N.A. and Abbas, H. (2015), "Effectiveness of hybrid-fibers in improving the impact resistance of RC slabs", Int. J. Impact Eng., 81, 61-73. https://doi.org/10.1016/j.ijimpeng.2015.03.010
- Canovas, M.F. and Gaitan, V.H. (2012), "Behavior of steel fiber high strength concrete under impact of projectiles", Materiales de Construccion, 62(307), 381-396. https://doi.org/10.3989/mc.2012.00911
- Chen, X.W. and Li, Q.M. (2002), "Deep penetration of a nondeformable projectile with different geometrical characteristics", Int. J. Impact Eng., 27(6), 619-637. https://doi.org/10.1016/S0734-743X(02)00005-2
- Demir, F. (2008), "Prediction of elastic modulus of normal and high strength concrete by artificial neural networks", Constr. Build. Mater., 22(7), 1428-1435. https://doi.org/10.1016/j.conbuildmat.2007.04.004
- Ding, X., Zhao, M., Zhou, S., Fu, Y. and Li, C. (2019), "Statistical analysis and preliminary study on the mix proportion design of self-compacting steel fiber reinforced concrete", Materials, 12(4), 637. https://doi.org/10.3390/ma12040637
- Feng, J., Gao, X., Li, J., Dong, H., He, Q., Liang, J. and Sun, W. (2019a), "Penetration resistance of hybrid fiber-reinforced highstrength concrete under projectile multi-impact", Constr. Build. Mater., 202, 341-352. https://doi.org/10.1016/j.conbuildmat.2019.01.038
- Feng, J., Gao, X., Li, J., Dong, H., Yao, W., Wang, X. and Sun, W. (2019b), "Influence of fiber mixture on impact response of ultra-high-performance hybrid fiber reinforced cementitious composite", Compos. Part B, Eng., 163, 487-496. https://doi.org/10.1016/j.compositesb.2018.12.141
- Gulsan, M.E., Alzeebaree, R., Rasheed, A.A., Nis, A. and Kurtoglu, A.E. (2019), "Development of fly ash/slag based selfcompacting geopolymer concrete using nano-silica and steel fiber", Constr. Build. Mater., 211, 271-283. https://doi.org/10.1016/j.conbuildmat.2019.03.228
- He, T., Wen, H.M. and Guo, X.J. (2011), "A spherical cavity expansion model for penetration of ogival-nosed projectiles into concrete targets with shear-dilatancy", Acta Mechanica Sinica, 27(6), 1001-1012. https://doi.org/10.1007/s10409-011-0505-1
- Iqbal, S., Ali, A., Holschemacher, K. and Bier, T.A. (2015), "Mechanical properties of steel fiber reinforced high strength lightweight self-compacting concrete (SHLSCC)", Constr. Build. Mater., 98, 325-333. https://doi.org/10.1016/j.conbuildmat.2015.08.112
- Kennedy, R.P. (1976), "A review of procedures for the analysis and design of concrete structures to resist missile impact effect", Nuclear Engi. Des., 37, 183-203. https://doi.org/10.1016/0029-5493(76)90015-7
- Khaloo, A., Raisi, E.M., Hosseini, P. and Tahsiri, H. (2014), "Mechanical performance of self-compacting concrete reinforced with steel fibers", Constr. Build. Mater., 51(01), 179-186. https://doi.org/10.1016/j.conbuildmat.2013.10.054
- Lee, S., Kim, G., Kim, H., Son, M., Choe, G. and Nam, J. (2018), "Strain behavior of concrete panels subjected to different nose shapes of projectile impact", Materials, 11(3), 409. https://doi.org/10.3390/ma11030409
- Li, Q.M. and Chen, X.W. (2003), "Dimensionless formulae for penetration depth of concrete target impacted by a nondeformable projectile", Int. J. Impact Eng., 28(1), 93-116. https://doi.org/10.1016/S0734-743X(02)00037-4
- Li, Q.M., Reid, S.R., Wen, H.M. and Telford, A.R. (2005), "Local impact effects of hard missiles on concrete targets", Int. J. Impact Eng., 32(1-4), 224-284. https://doi.org/10.1016/j.ijimpeng.2005.04.005
- Li, P.P., Yu, Q.L. and Brouwers, H.J.H. (2018), "Effect of coarse basalt aggregates on the properties of Ultra-High Performance Concrete (UHPC)", Constr. Build. Mater., 170, 649-659. https://doi.org/10.1016/j.conbuildmat.2018.03.109
- Li, N., Lu, Y., Li, S. and Gao, D. (2020a), "Axial compressive behaviour of steel fibre reinforced self-stressing and selfcompacting concrete-filled steel tube columns", Eng. Struct., 222, 111108. https://doi.org/10.1016/j.engstruct.2020.111108
- Li, P.P., Brouwers, H.J.H. and Yu, Q. (2020b), "Influence of key design parameters of ultra-high performance fibre reinforced concrete on in-service bullet resistance", Int. J. Impact Eng., 136, 103434. https://doi.org/10.1016/j.ijimpeng.2019.103434
- Liu, J., Wu, C., Li, J., Su, Y., Shao, R., Liu, Z. and Chen, G. (2017), "Experimental and numerical study of reactive powder concrete reinforced with steel wire mesh against projectile penetration", Int. J. Impact Eng., 109, 131-149. https://doi.org/10.1016/j.ijimpeng.2017.06.006
- Lovichova, R., Mara, M. and Fornusek, J. (2017), "Projectile impact resistance of UHPFRC structures for various methods of fresh mixture placement", Procedia Eng., 193, 80-87. https://doi.org/10.1016/j.proeng.2017.06.189
- Mahakavi, P. and Chithra, R. (2019), "Impact resistance, microstructures and digital image processing on selfcompacting concrete with hooked end and crimped steel fiber", Constr. Build. Mater., 220, 651-666. https://doi.org/10.1016/j.conbuildmat.2019.06.001
- Maca, P., Sovjak, R. and Konvalinka, P. (2014), "Mix design of UHPFRC and its response to projectile impact", Int. J. Impact Eng., 63, 158-163. https://doi.org/10.1016/j.ijimpeng.2013.08.003
- Mohamed, R.N., Zamri, N.F., Elliott, K.S., Rahman, A.B.A. and Bakhary, N. (2019), "Steel fibre self-compacting concrete under biaxial loading", Constr. Build. Mater., 224, 255-265. https://doi.org/10.1016/j.conbuildmat.2019.07.076
- Nili, M., Ghorbankhani, A.H., AlaviNia, A. and Zolfaghari, M. (2016), "Assessing the impact strength of steel fibre-reinforced concrete under quasi-static and high velocity dynamic impacts", Constr. Build. Mater., 107, 264-271. https://doi.org/10.1016/j.conbuildmat.2015.12.161
- Prakash, A., Srinivasan, S.M. and Rama Mohan Rao, A. (2017), "Application of steel fibre reinforced cementitious composites in high velocity impact resistance", Mater. Struct., 50(1), 6. https://doi.org/10.1617/s11527-016-0872-y
- Rui, Y. and Wang, J. (2021), "Anti-penetration and Anti-explosion Performance Analysis of Steel Fiber Reinforced Concrete Target with Bulletproof Steel Plate", Bing Gong Zi Dong Hua 1, 88. Web.
- Soufeiani, L., Raman, S.N., Jumaat, M.Z.B., Alengaram, U.J., Ghadyani, G. and Mendis, P. (2016), "Influences of the volume fraction and shape of steel fibers on fiber-reinforced concrete subjected to dynamic loading - a review", Eng. Struct., 124, 405-447. https://doi.org/10.1016/j.engstruct.2016.06.029
- Sovjak, R., Vavrinik, T., Zatloukal, J., Maca, P., Micunek, T. and Frydryn, M. (2015), "Resistance of slim UHPFRC targets to projectile impact using in-service bullets", Int. J. Impact Eng., 76, 166-177. https://doi.org/10.1016/j.ijimpeng.2014.10.002
- Tai, Y.S. (2009), "Flat ended projectile penetrating ultra-high strength concrete plate target", Theor. Appl. Fract. Mech., 51(2), 117-128. https://doi.org/10.1016/j.tafmec.2009.04.005
- US Army (1986), Fundamentals of protective design for conventional weapons; Army Technical Manual (TM).
- Wang, S., Le, H.T.N., Poh, L.H., Feng, H. and Zhang, M.H. (2016), "Resistance of high-performance fiber-reinforced cement composites against high-velocity projectile impact", Int. J. Impact Eng., 95, 89-104. https://doi.org/10.1016/j.ijimpeng.2016.04.013
- Wen, H.M. and Yang, Y. (2014), "A note on the deep penetration of projectiles into concrete", Int. J. Impact Eng., 66, 1-4. https://doi.org/10.1016/j.ijimpeng.2013.11.008
- Wu, H., Fang, Q., Chen, X.W., Gong, Z.M. and Liu, J.Z. (2015a), "Projectile penetration of ultra-high performance cement based composites at 510-1320 m/s", Constr. Build. Mater., 74, 188-200. https://doi.org/10.1016/j.conbuildmat.2014.10.041
- Wu, H., Fang, Q., Gong, J., Liu, J.Z., Zhang, J.H. and Gong, Z.M. (2015b), "Projectile impact resistance of corundum aggregated UHP-SFRC", Int. J. Impact Eng., 84, 38-53. https://doi.org/10.1016/j.ijimpeng.2015.05.007
- Wu, Z., Shi, C., He, W. and Wu, L. (2016), "Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete", Constr. Build. Mater., 103, 8-14. https://doi.org/10.1016/j.conbuildmat.2015.11.028
- Xu, Y., Keer, L.M. and Luk, V.K. (1997), "Elastic-cracked model for penetration into unreinforced concrete targets with ogival nose projectiles", Int. J. Solids Struct., 34(12), 1479-1491. https://doi.org/10.1016/S0020-7683(96)00099-6
- Yarin, A.L., Rubin, M.B. and Roisman, I.V. (1995), "Penetration of a rigid projectile into an elastic-plastic target of finite thickness", Int. J. Impact Eng., 16(5-6), 801-831. https://doi.org/10.1016/0734-743X(95)00019-7
- Young, C.W. (1997), Penetration equations (No. SAND-97-2426); Sandia National Labs., Albuquerque, NM, USA.
- Yu, R., Spiesz, P. and Brouwers, H.J.H. (2016), "Energy absorption capacity of a sustainable Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) in quasi-static mode and under high velocity projectile impact", Cement Concrete Compos., 68, 109-122. https://doi.org/10.1016/j.cemconcomp.2016.02.012
- Zarrin, O. and Khoshnoud, H.R. (2019), "Experimental investigation on self-compacting concrete reinforced with steel fibers", Struct. Eng. Mech., Int. J., 59(1), 133-151. https://doi.org/10.12989/sem.2016.59.1.133
- Zhang, J., Maalej, M. and Quek, S.T. (2007), "Performance of hybrid-fiber ECC blast/shelter panels subjected to drop weight impact", J. Mater. Civil Eng., 19(10), 855-863. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:10(855)
- Zhang, X., Ruiz, G., Tarifa, M., Cendon, D., Galvez, F. and Alhazmi, W.H. (2017), "Dynamic fracture behavior of steel fiber reinforced self-compacting concretes (SFRSCCs)", Materials, 10(11), 1270. https://doi.org/10.3390/ma10111270
- Zhang, Y., Zhao, K., Li, Y., Gu, J., Ye, Z. and Ma, J. (2018), "Study on the local damage of SFRC with different fraction under contact blast loading", Comput. Concrete, Int. J., 22(1), 63-70. https://doi.org/10.12989/cac.2018.22.1.063