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A BLOW-UP RESULT FOR A STOCHASTIC HIGHER-ORDER

KIRCHHOFF-TYPE EQUATION WITH NONLINEAR

DAMPING AND SOURCE TERMS

Yong Han Kang∗

Abstract. In this paper, we consider a stochastic higher-order Kirchhoff-

type equation with nonlinear damping and source terms. We prove the
blow-up of solution for a stochastic higher-order Kirchhoff-type equation

with positive probability or explosive in energy sense.

1. Introduction

In this paper, we are concerned with the following stochastic higher-order
Kirchhoff-type equation with nonlinear damping and source terms

utt(t) + (

∫
Ω

|Dmu(t)|2dx)q(−△)mu(t) + |ut(t)|rut(t) = |u(t)|pu(t)

+εσ(x, t)∂tW (x, t), in D × [0, T ],

u(x, t) = 0,
∂iu

∂νi
= 0, i = 1, 2, · · ·,m− 1, in ∂D × [0, T ], (1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ D,

where m ≥ 1, p, q, r ≥ 0, D is a bounded domain in Rn (n ≥ 1) with a smooth
boundary ∂D and a unit outer normal ν. Here, W (x, t) is a finite dimensional
Wiener process and σ(x, t) is L2(D) valued progressively measurable, and ε is
a given positive constant which measures the strength of noise.

For the form of High-order Kirchhoff type. Fucai Li [9] considered the higher
order Kirchhoff type equation with nonlinear dissipation as follow

utt(t) + (

∫
Ω

|Dmu(t)|2dx)q(−△)mu(t) + |ut(t)|rut(t) = |u(t)|pu(t) in D × (0,∞).
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He obtained that solution exists globally if p ≤ r, while if p > max{r, 2q}, the
solution with negative initial energy blows up at finite time.
Gao et al.[4] proved that the solution blows up in finite time under suitable
conditions on the initial datum and when p > q ≥ 2, m, n ≥ 1,

utt(t) +M(||Dmu(t)||22)(−△)mu(t) + |ut(t)|q−2ut(t) = |u(t)|p−2u(t) in D × (0,∞).

Under the consideration of random environment, there are many works on
the stochastic wave equation with global existence and invariant measure for
linear and nonlinear damping (see reference in [1, 2, 3, 5, 10]). For the non-
linear stochastic viscoelastic wave equation with linear damping, the authors
has proved the global solutions and blow-up with positive probability for the
stochastic viscoelastic wave equation (see in [2, 5, 7, 12, 13, 14]).

Cheng et al.[2] consider the stochastic viscoelastic wave equation with non-
linear damping and source term

utt(t)−∆u(t) +

∫ t

0

h(t− τ)∆u(τ)dτ + |ut(t)|q−2ut(t)

= |u(t)|p−2u(t) + ϵσ(x, t)∂tW (x, t) in D × [0, T ].

They studied the local solution of stochastic viscoelastic wave equation and
investigated the solution blow-up with positive probability or it is explosive
in energy sense in p > q. Kim et al. [8] consider the stochastic quasilinear
viscoelastic wave equation with nonlinear damping and source terms

|u(t)|ρutt(t)−∆u(t)−∆utt(t) +

∫ t

0

h(t− τ)∆u(τ)dτ + |ut(t)|q−2ut(t)

= |u(t)|p−2u(t) + ϵσ(x, t)∂tW (x, t) in D × (0, T ).

Authors proved that finite time blow-up is possible under the condition blow if
p > max{q, ρ+ 2} and the initial data are large enough. Moreover, Rana et al.
[13] proved the global existence and finite time blow-up in a class of stochastic
nonlinear wave equations form

∂ttu(t)−∆∂tu(t)− div(|∇u(t)|α−1∇u(t))− div(|∇∂tu(t)|β−2∇∂tu(t))

+a|∂tu(t)|q−2∂tu(t) = b|u(t)|p−2u(t) + σ(x, t)∂tW (x, t) in D × [0, T ).

Motivated by previous works, for any p > max{r, 2q}, we study the blow-up
of solution for stochastic higher-order Kirchhoff-type equation with nonlinear
damping and source terms with positive probability or explosive in energy sense.

2. Preliminaries

Let (X, || · ||X) be a separable Hilbert space with Borel σ-algebra B(X), and
let (Ω,F, P ) be a probability space. We set H = L2(D) with the inner product
and norm denoted by (·, ·) and || · ||, respectively. Denote by || · ||q the Lq(D)
norm for 1 ≤ q ≤ ∞ and by ||∇ · || the Dirichlet norm in V = H1

0 (D) which is
equivalent to H1(D) norm.
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Now, we introduce the following hypotheses:

(H1) We assume that p, q, r satisfy

p > max{r, 2q} and 0 < p ≤ 2

n− 2m
if n > 2m, p > 0 if n ≤ 2m. (1)

(H2) σ(x, t) is H1
0 (D) ∩ L∞(D) valued progressively measurable such that

E
∫ T

0
(||∇σ(t)||2 + ||∇σ(t)||2∞)dt ≤ ∞. (2)

In this paper, E(·) stands for expectation with respect to probability measure
P , and W (x, t)(t ≥ 0) is a V-valued Q-Wiener process on the probability space
with the covariance operator Q satisfying Tr(Q) < ∞. A complete orthonormal
system{ek}∞k=1 in V with c0 := supk≥1 ||ek||∞ < ∞, and a bounded sequence of
nonnegative real members {λk}∞k=1 satisfies that

Qek = λkek, k = 1, 2, · · ·.
To simplify the computations, we assume that the covariance operator Q and
Laplacian −△ with a homogeneous Dirichlet boundary condition have a com-
mon set of eigenfunctions, that is

−△ek = µkek, x ∈ D,

ek = 0, x ∈ ∂D,

and then, for any t ∈ [0, T ], W (x, t) has an expansion

W (x, t) =

∞∑
k=1

√
λkβk(t)ek(t), (3)

where {βk(t)}∞k=1 are real valued Brownian motions mutually independent on

(Ω,F, P ). Let H be the set of L0
2 = L2(Q1/2V, V )-valued processes with the

norm

||Φ(t)||H =

(
E

∫ t

0

||Φ(s)||2L0
2
ds

)1/2

=

(
E

∫ t

0

Tr(Φ(s)QΦ∗(s))ds

)1/2

< ∞,

where Φ∗(s) denotes the adjoint operator of Φ(s). For any Φ∗(t) ∈ H, we
can define the stochastic integral with respect to the Q-Wiener process as∫ t

0
Φ(s)dW (s), which is martingale. For more details about the infinite di-

mension Wiener process and the stochastic integral, we refer the readers to [13].

By combining the arguments of [5, 9], we have the following existence theo-
rem.

Definition 1. Assume that (u0, u1) ∈ (H2m(D) × Hm
0 (D)) × Hm

0 (D), and

E(
∫ T

0
||σ(t)||2dt) < ∞, u is said to be solution of (1.1) on the interval [0, T ), if

(u, ut) is (H2m(D) × Hm
0 (D)) × Hm

0 (D)-valued progressively measurable, u ∈
L2(Ω;L2(0, T ;H2m(D)∩Hm

0 (D)))∩L2(Ω;C([0, T );Hm
0 (D))), ut ∈ L2(Ω;L∞(0, T ;Hm

0 (D)))∩
L2(Ω;C([0, T );Hm

0 (D))), and such that (1.1) holds in the sense of distributions
over (0, T )×D for almost all w.



322 Y.H. KANG

Theorem 2.1. ([5, 6]). Assume that (H1)− (H2) hold. Then, for the initial
data (u0, u1) ∈ (H2m(D) ∩ Hm

0 (D)) × Hm
0 (D), problem (1) has a pointwise

unique solution u such that

u ∈ L2(Ω;L2(0, T ;H2m(D) ∩Hm
0 (D))) ∩ L2(Ω;C([0, T );Hm

0 (D))),

and

ut ∈ L2(Ω;L∞(0, T ;Hm
0 (D))) ∩ L2(Ω;C([0, T );Hm

0 (D))).

2.1. Blow-up result

In this section, we prove our main result for p > max{r, 2q}. For this purpose,
we give defined restrictions on σ(x, t) such that

E

∫ ∞

0

∫
D

σ2(x, t)dxdt < ∞. (1)

Let B be the best constant of the embedding inequality ||u||p+2 ≤ B||Dmu||.
We set

α1 = B−(p+2)/(p−2q),

E1 = (
1

2(q + 1)
− 1

p+ 2
)α

2(q+1)
1 , (2)

and

E(t) =
1

2
||ut||2 +

1

2(q + 1)
||Dmu||2(q+1) − 1

p+ 2
||u||p+2

p+2. (3)

Then we have the following.

Lemma 2.2. ([11]). Let u be solution of (1). Assume that E(0) < E1 and
||Dmu0||α1 > α1. Then there exists a constant α2 > α1 such that

||Dmu(·, t)|| ≥ α2,∀t ≥ 0, (4)

||u||p+2 ≥ Bα2,∀t ≥ 0. (5)

For each N , stopping time τN is given as

τN = inf{t > 0 : ||Dmu(t)||2 ≥ N}, (6)

where τN is increasing in N , and

τ∞ = lim
N→+∞

τN .

In order to prove our result, we rewrite (1) as an equivalent Itô’s system

du = vdt

dv = −
(
(

∫
Ω

|Dmu|2dx)q(−∆)mu− |v|rv + |u|pu
)
dt

+εσ(x, t)dWt(x, t), (x, t) ∈ D × (0, T ) (7)

u(x, t) = 0, (x, t) ∈ ∂D × (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x) = u1(x), x ∈ D,



A STOCHASTIC HIGHER-ORDER KIRCHHOFF-TYPE EQUATION 323

where (u0, u1) ∈ (H2m(D)∩Hm
0 (D))×Hm

0 (D). Then the energy function F (t)
becomes

F (t) =
1

2
||v(t)||2 + 1

2(q + 1)
||Dmu(t)||2(q+1) − 1

p+ 2
||u(t)||p+2

p+2. (8)

Next, we give a lemma.

Lemma 2.3. Let (u, v) be a solution of equation(7) with the initial data (u0, v0) ∈
(H2m(D) ∩Hm

0 (D))×Hm
0 (D). Then, we have

d

dt
E[F (t)] = −E||v(t)||r+2

r+2 +
ϵ2

2
Σ∞

j=1E

∫
D

λje
2
j (x)σ

2(x, t)dx, (9)

and

E(u(t), v(t)) = (u0, v0)−
∫ t

0

E||Dmu(s)||2(q+1)ds (10)

−
∫ t

0

E(u(s), |v(s)|rv(s))ds+
∫ t

0

E||u(s)||p+2
p+2ds+

∫ t

0

||v(s)||2ds.

Proof. Multiplying equation(7) by v(t) and using Itô’s formula, then we deduce
(9). We also multiplying equation(7) by u(t) and integrating by parts over (0, t),
and we arrive at (10) (see [5]). Let

G(t) =
ϵ2

2
Σ∞

j=1E

∫ t

0

∫
D

λje
2
j (x)σ

2(x, s)dxds. (11)

Due to (1), we derive

G(∞) =
ϵ2

2
Σ∞

j=1E

∫ ∞

0

∫
D

λje
2
j (x)σ

2(x, s)dxds

≤ ϵ2

2
Tr(Q)c0E

∫ ∞

0

∫
D

σ2(x, s)dxds = E1 < ∞. (12)

We set

H(t) = G(t)− E[F (t)].

Then, by(9) we get

H ′(t) = G′(t)− d
dtE[F (t)] ≥ E||v(t)||r+2

r+2 ≥ 0. (13)

□

Lemma 2.4. ([5]). Let (u, v) be a solution of (7). Then, there exists a positive
constant C such that

E||u(t)||s+2
p+2 ≤ C[G(t)−H(t)− E||v(t)||2 + E||u(t)||p+2

p+2, 2 ≤ s ≤ p. (14)

Proof. If ||u||p+2 ≤ 1, then ||u||sp+2 ≤ ||u||2p+2 ≤ C||Dmu||2 by Sobolev embed-

ding. If ||u||p+2 ≥ 1, then ||u||s+2
p+2 ≤ ||u||p+2

p+2. Thus, there exists a constant

C > 0 such that E||u||s+2
p+2 ≤ C(E||Dmu||2 +E||u||p+2

p+2). Therefore, in combina-

tion with the definition of energy function, we get (14). □
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Theorem 2.5. Suppose that p > max{r, 2q} and

0 < p ≤ 2

n− 2m
if n > 2m, p > 0 if n ≤ 2m. (15)

Assume that (H1)-(H2) and (1) hold. Let (u, v) be a solution of equation (7)
with initial data (u0, v0) ∈ (H2m(D) ∩Hm

0 (D))×Hm
0 (D) satisfying

F (0) ≤ −(1 + β)E1, (16)

where β > 0 is an arbitrary constant. If L(0) > 0, then the solution (u, v) of
equation (7) and the lifespan τ∞ defined above, either
(1) P (τ∞ < ∞) > 0, that is, ||Dmu(t)|| blows up in finite time with positive
probability, or
(2) there exists a positive time T ∗ ∈ (0, T0] such that

lim
t→T∗

E[F (t)] = +∞, (17)

where

T0 =
1− α

αKL−α/(1−α)(0)
, (18)

L(0) = H1−α(0) + δE(u0, v0) > 0,

and α,K are given in later.

Proof. For the lifespan τ∞ of the solution {u(t) : t ≥ 0} of (7) with Hm
0 (D)

norm. Firstly, we treat the case when P (τ∞ = +∞) < 1. Then, for sufficiently
large T > 0, by (13) and (16), we have

0 < (1 + β)E1 ≤ −F (0) = H(0) ≤ H(t) ≤ G(t)

+
1

p+ 2
E||u(t)||p+2

p+2 ≤ E1 +
1

p+ 2
E||u(t)||p+2

p+2. (19)

Define by

L(t) = H1−α(t) + δE(u(t), v(t)),

where

0 < α < min{1
2
,

p− r

(p+ 2)(r + 2)
,

p

2(p+ 2)
} (20)

and δ is a sufficiently small constant to be determined in later.
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Using (8),(10) and (13), we deduce

L′(t) = (1− α)H−α(t)H ′(t) + δ[E||Dmu(t)||2(q+1) − E(u(t), |v(t)|rv(t))
+E||u(t)||p+2

p+2 + E||v(t)||2]
≥ (1− α)H−α(t)E||v(t)||r+2

r+2 + 4δ(q + 1)[H(t)−G(t) + EF (t)]

+δ[E||Dmu(t)||2(q+1) − E(u(t), |v(t)|rv(t)) + E||u(t)||p+2
p+2 + E||v(t)||2]

= (1− α)H−α(t)E||v(t)||r+2
r+2 + 2δ(q + 1)H(t)− 2δ(q + 1)G(t)

+2δ(q + 1)E||v||2 + 2δE||Dmu(t)||2(q+1) − 4δ(q + 1)

p+ 2
E||u(t)||p+2

p+2

+δE||Dmu(t)||2(q+1) − δE(u(t), |v(t)|rv(t)) + δE||u(t)||p+2
p+2 + δE||v(t)||2

= (1− α)H−α(t)E||v(t)||r+2
r+2 + 4δ(q + 1)H(t)− 4δ(q + 1)G(t) (21)

+δ(2q + 3)E||v||2 + 2δE||Dmu(t)||2(q+1) − δE(u(t), |v(t)|rv(t))

+δ(1− 4(q + 1)

p+ 2
)E||u(t)||p+2

p+2.

For r < p by E||u(t)||r+2
r+2 ≤ cE||u(t)||r+2

p+2 and Hölder’s inequality, we derive the

following estimate (see[2]):

E(u(t), |v(t)|rv(t)) ≤ (E||v(t)||r+2
r+2)

r+1
r+2 (E||u(t)||r+2

r+2)
1

r+2

≤ c(E||v(t)||r+2
r+2)

r+1
r+2 (E||u(t)||r+2

p+2)
1

r+2

≤ c(E||v(t)||r+2
r+2)

r+1
r+2 (E||u(t)||p+2

p+2)
1

p+2

≤ c(E||v(t)||r+2
r+2)

r+1
r+2 (E||u(t)||p+2

p+2)
1

r+2 (E||u(t)||p+2
p+2)

1
p+2−

1
r+2 , (22)

and Young’s inequality

(E||v(t)||r+2
r+2)

r+1
r+2 (E||u(t)||p+2

p+2)
1

r+2 ≤ r + 1

r + 2
µE||v(t)||r+2

r+2 +
µ−(r+1)

r + 2
E||u(t)||p+2

p+2, (23)

where µ is a constant to be determined later. In view of (19), we get

E||u(t)||p+2
p+2 ≥ (p+ 2)(H(t)−G(t)) ≥ ρH(t), (24)

where ρ = (p+2)β
1+β . With the assumption of H(0) > 1, (20), (23) and (24) implies

that

(E||u(t)||p+2
p+2)

1
p+2−

1
r+2 ≤ ρ

1
p+2−

1
r+2H(t)

1
p+2−

1
r+2

≤ ρ
1

p+2−
1

r+2H−α(t) ≤ ρ
1

p+2−
1

r+2H−α(0). (25)

Combining with (22), (23) and (25), we arrive at

|E(u(t), |v(t)|rv(t))| ≤ a1
r + 1

r + 2
µE||v(t)||r+2

r+2H
−α(t) (26)

+a1
µ−(r+1)

r + 2
E||u(t)||p+2

p+2H
−α(0),
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where a1 = cρ
1

p+2−
1

r+2 . Hence, substituting (26) in (21), we have

L′(t) ≥ (1− α)H−α(t)E||v(t)||r+2
r+2 + 4δ(q + 1)H(t)− 4δ(q + 1)G(t)

+δ(2q + 3)E||v(t)||2 + 2δE||Dmu(t)||2(q+1)

−a1
r + 1

r + 2
µδE||v(t)||r+2

r+2H
−α(t)− a1

µ−(r+1)δ

r + 2
E||u(t)||p+2

p+2H
−α(0)

+δ(1− 4(q + 1)

p+ 2
)E||u(t)||p+2

p+2

≥ (1− α− a1
r + 1

r + 2
µδ)H−α(t)E||v(t)||r+2

r+2

+2δ(p+ 1)H(t) + δ(2q + 3)E||v(t)||2 − 2δ(p+ 2)G(t)

+2δE||Dmu(t)||2(q+1) − a1
µ−(r+1)δ

r + 2
E||u(t)||p+2

p+2H
−α(0). (27)

Using Lemma 2.4 with s = p and (27), we have

L′(t) ≥ (1− α− a1
r + 1

r + 2
µδ)H−α(t)E||v(t)||r+2

r+2

+2δ(p+ 2)H(t)− 2δ(p+ 2)G(t) + 2δE||Dmu(t)||2(q+1)

+δ(2q + 3)E||v(t)||2 + 2δE||Dmu(t)||2(q+1)

−a1
µ−(r+1)δH−α(0)C

r + 2
[G(t)−H(t)− E||v(t)||2 + E||u(t)||p+2

p+2]

= (1− α− a1
r + 1

r + 2
µδ)H−α(t)E||v(t)||r+2

r+2 (28)

+δ[2(p+ 2) + a2µ
−(r+1)]H(t)

−δ[2(p+ 2) + a2µ
−(r+1)]G(t)

+δ[(2q + 3) + a2µ
−(r+1)]E||v(t)||2

+2δE||Dmu(t)||2(q+1) − δa2µ
−(r+1)E||u(t)||p+2

p+2,

where a2 = Ca1H
−α(0)/(r + 2).

Note that

H(t) ≥ G(t) + 1
p+2E||u(t)||p+2

p+2 − 1
2E||v(t)||2 − 1

2(q+1)E||Dmu(t)||2(q+1).
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Then estimate (28) yields

L′(t) ≥ (1− α− a1
r + 1

r + 2
µδ)H−α(t)E||v(t)||r+2

r+2 (29)

+δ[2(p+ 2)− a1 + a2µ
−(r+1)]H(t)

−δ[2(p+ 2)− a1 + a2µ
−(r+1)]G(t)

+δ[(2q + 3)− a1
2

+ a2µ
−(r+1)]E||v(t)||2

+δ[2− a1
2(q + 1)

]E||Dmu(t)||2(q+1)

+δ[
a1

p+ 2
− a2µ

−(r+1)]E||u(t)||p+2
p+2.

From (12) and (19), we deduce

[2(p+ 2)− a1 + a2µ
−(r+1)]G(t) ≤ [2(p+ 2)− a1 + a2µ

−(r+1)]E1

≤ [
2(p+ 2)− a1 + a2µ

−(r+1)

1 + β
]H(t).(30)

Substituting (30) in (29), we get

L′(t) ≥ (1− α− a1
r + 1

r + 2
µδ)H−α(t)E||v(t)||r+2

r+2 (31)

+δ[2(p+ 2)− a1 + a2µ
−(r+1)]

β

1 + β
H(t)

+δ[(2q + 3)− a1
2

+ a2µ
−(r+1)]E||v(t)||2

+δ[2− a1
2(q + 1)

]E||Dmu(t)||2(q+1)

+δ[
a1

p+ 2
− a2µ

−(r+1)]E||u(t)||p+2
p+2.

Next, we can choose µ large enough so that (31) becomes

L′(t) ≥ (1− α− a1
r + 1

r + 2
µδ)H−α(t)E||v(t)||r+2

r+2 (32)

+δξ(H(t) + E||v(t)||2 + E||Dmu(t)||2(q+1) + E||u(t)||p+2
p+2),

where

ξ = min{ (2(p+ 2)− a1 + a2µ
−(r+1))

β

1 + β
, (2q + 3)− a1

2
+ a2µ

−(r+1),

2− a1
2(q + 1)

,
a1

p+ 2
− a2µ

−(r+1)} > 0.

Once µ is fixed we pick δ small enough so that

1− α− a1
r + 1

r + 2
µδ > 0.
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Using this, (32) takes the form

L′(t) ≥ δξ(H(t) + E||v(t)||2 + E||Dmu(t)||2(q+1) + E||u(t)||p+2
p+2) ≥ 0.(33)

Thus, we see that

L(t) ≥ L(0) = H1−α(0) + δ(u0, u1) > 0, ∀t ≥ 0. (34)

Since

|E
∫
D
u(t)v(t)dx| ≤ c(E||u(t)||2p)

1
2 (E||v(t)||2) 1

2 ,

it implies that

|E
∫
D
u(t)v(t)dx|

1
1−α ≤ c[(E||u(t)||2p+2)

κ
2(1−α) + (E||v(t)||2)

ν
2(1−α) ], (35)

for 1/κ + 1/ν = 1. We choose ν = 2(1 − α), κ = 2(1 − α)/(1 − 2α), then
κ/2(1− α) = 1/(1− 2α) ≤ (p+ 2)/2, by (20) and (35) becomes

|E
∫
D
u(t)v(t)dx|

1
1−α ≤ c[E||u(t)||

2
1−2α

p+2 + (E||v(t)||2]. (36)

Using Lemma 2.4 with s = 2/(1− 2α), we obtain

|E
∫
D
u(t)v(t)dx|

1
1−α ≤ c(H(t) + E||v(t)||2 + E||Dmu(t)||2(q+1)

+E||u(t)||p+2
p+2) ∀t ≥ 0. (37)

Therefore, we have

L
1

1−α (t) ≤ c(H(t) + δ
1

1−α |E
∫
D

u(t)v(t)dx|
1

1−α )

≤ c(H(t) + E||v(t)||2 + E||Dmu(t)||2(q+1) + E||u(t)||p+2
p+2) ∀t ≥ 0.(38)

Combining (33) and (38), we get

L
′
(t) ≥ KL

1
1−α (t),∀t ≥ 0,

where K is a positive constant depending only on c and δξ, then it yields . It
follows that

L
α

1−α (t) ≥ 1− α

(1− α)L− α
1−α (0)− αKt

.

Let

T0 =
1− α

αKL
α

1−α (0)
.

Then, L(t) → +∞ as t → T0. This means that there exists a positive time
T ∗ ∈ (0, T0] such that

lim
t→T∗

E[F (t)] = +∞.

As for the case when P (τ∞ = +∞) < 1 (i.e.P (τ∞ < +∞) > 0), then E||Dmu(t)||
blows up in finite time T ∗ ∈ (0, τ∞) with positive probability. Thus the proof
of Theorem 3.1 is completed. □
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