East Asian Math. J.
Vol. 39 (2023), No. 3, pp. 299-303
YNMS
http://dx.doi.org/10.7858/eamj.2023.022

A NOTE ON THREE DERIVATIONS OF GREGORY-LEIBNIZ SERIES FOR π VIA A HYPERGEOMETRIC SERIES APPROACH

Dongkyu Lim* and Arjun K. Rathie

Abstract

The aim of this note is to provide three derivations of the wellknown Gregory-Leibniz series for π via a hypergeometric series approach.

1. Introduction

We first recall the definition of generalized hypergeometric series with p numerator and q denominator parameters $[1,2,4,6]$ viz.

$$
{ }_{p} F_{q}\left[\begin{array}{cccc}
a_{1}, & a_{2}, & \ldots, & a_{p} \tag{1}\\
b_{1}, & b_{2}, & \ldots, & b_{q}
\end{array} ; z\right]=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n}\left(a_{2}\right)_{n} \ldots\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n}\left(b_{2}\right)_{n} \ldots\left(b_{q}\right)_{n}} \frac{z^{n}}{n!},
$$

where $(a)_{n}$ denotes the well-known Pochhammer symbols (or the shifted factorial or the raised factorial, since $(1)_{n}=n!$), which is defined as

$$
(a)_{n}=\frac{\Gamma(a+n)}{\Gamma(a)}= \begin{cases}a(a+1) \cdots(a+n-1), & n \in \mathbb{N} \tag{2}\\ 1, & n=0\end{cases}
$$

where $\Gamma(z)$ is the well-known gamma function.
For details about the convergence (including its absolutely convergence) of the generalized hypergeometric series, we refer the standard books [1, 2, 4, 6].

It should be remarked here that whenever a generalized hypergeometric series reduces to the gamma function, the results are very important from the applications point of view. Thus the classical summation theorems for the series ${ }_{2} F_{1}$, ${ }_{3} F_{2},{ }_{4} F_{3}$ and others listed, for example, in the standard book of Slater [6] play

[^0]an important role. However, in our present investigation, we shall require the following classical summation theorems recorded in $[3,6]$ viz.
\[

{ }_{2} F_{1}\left[$$
\begin{array}{cc}
a, \quad b & \tag{3}\\
1+a-b
\end{array}
$$\right]=\frac{\Gamma\left(1+\frac{1}{2} a\right) \Gamma(1+a-b)}{\Gamma(1+a) \Gamma\left(1+\frac{1}{2} a-b\right)},
\]

$$
\begin{gather*}
{ }_{3} F_{2}\left[\begin{array}{c}
a, \quad b, \quad c \\
1+a-b, 1+a-c
\end{array} ; 1\right. \tag{4}\\
\quad=\frac{\Gamma\left(1+\frac{1}{2} a\right) \Gamma(1+a-b) \Gamma(1+a-c) \Gamma\left(1+\frac{1}{2} a-b-c\right)}{\Gamma(1+a) \Gamma\left(1+\frac{1}{2} a-b\right) \Gamma\left(1+\frac{1}{2} a-c\right) \Gamma(1+a-b-c)}
\end{gather*}
$$

provided $\Re(a-2 b-2 c)>-2$,
and

$$
{ }_{4} F_{3}\left[\begin{array}{ccc}
a, & 1+\frac{1}{2} a, & b, \tag{5}\\
\frac{1}{2} a, & 1+a-b, & 1+a-c
\end{array} \quad ;-1\right]=\frac{\Gamma(1+a-b) \Gamma(1+a-c)}{\Gamma(1+a) \Gamma(1+a-b-c)} .
$$

In literature (3) is known as the classical Kummer summation theorem while (4) is known as the classical Dixon summation theorem.

Next, we mention the following well-known and very useful Gregory-Leibniz π-series viz.

$$
\begin{equation*}
1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\cdots=\frac{\pi}{4} \tag{6}
\end{equation*}
$$

Our aim of this note is to provide three derivations of (6) via a hypergeometric series approach, the same will be given in the next section.

2. Three derivations of the Gregory-Leibniz series

In this section, we shall derive the Gregory-Leibniz series by three methods via a hypergeometric series approach.

2.1. First method

Let us denote the left-hand side of Gregory-Leibniz series for π by s, we have

$$
\begin{aligned}
s & =1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\cdots+\frac{(-1)^{n}}{2 n+1}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} \\
& =\frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+\frac{1}{2}}
\end{aligned}
$$

Using the identity (2), it is easy to see that

$$
n+\frac{1}{2}=\frac{1}{2} \frac{\left(\frac{3}{2}\right)_{n}}{\left(\frac{1}{2}\right)_{n}}
$$

Thus

$$
s=\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(\frac{3}{2}\right)_{n}}{\left(\frac{1}{2}\right)_{n}}
$$

since $(1)_{n}=n$!. Thus

$$
s=\sum_{n=0}^{\infty}(-1)^{n} \frac{(1)_{n}\left(\frac{1}{2}\right)_{n}}{\left(\frac{3}{2}\right)_{n} n!} .
$$

Summing up the series, we have

$$
s={ }_{2} F_{1}\left[\begin{array}{ccc}
1, & \frac{1}{2} & \\
\frac{3}{2} & ;-1
\end{array}\right] .
$$

We now observe that the ${ }_{2} F_{1}$ can be evaluated with the help of classical Kummer summation theorem (3) by letting $a=1$ and $b=\frac{1}{2}$ and after some calculation, we easily arrive at the right-hand side of (6). This completes the first derivation of the π-series.

2.2. Second method

In this case, consider the Gregory-Leibniz series for π in the form

$$
\begin{aligned}
s & =\left(1-\frac{1}{3}\right)+\left(\frac{1}{5}-\frac{1}{7}\right)+\left(\frac{1}{9}-\frac{1}{11}\right)+\cdots+\left(\frac{1}{4 n+1}-\frac{1}{4 n+3}\right)+\cdots \\
& =2\left(\frac{1}{1 \cdot 3}+\frac{1}{5 \cdot 7}+\cdots+\frac{1}{(4 n+1)(4 n+3)}+\cdots\right) \\
& =2 \sum_{n=0}^{\infty} \frac{1}{(4 n+1)(4 n+3)} \\
& =\frac{1}{8} \sum_{n=0}^{\infty} \frac{1}{\left(n+\frac{1}{4}\right)\left(n+\frac{3}{4}\right)} .
\end{aligned}
$$

Proceeding as in case of first method, we see that

$$
s=\frac{2}{3}{ }_{3} F_{2}\left[\begin{array}{cccc}
1, & \frac{1}{4}, & \frac{3}{4} & \\
\frac{5}{4}, & \frac{7}{4} & & ; 1
\end{array}\right]
$$

We now observe that the ${ }_{3} F_{2}$ can be evaluated with the help of the classical Dixon summation theorem (4) by letting $a=1, b=\frac{1}{4}$ and $c=\frac{3}{4}$ and we easily arrive at the right-hand side of (6). This completes the second derivation of the π-series.

2.3. Third method

In this case, consider the Gregory-Leibniz series for π in the form

$$
\begin{align*}
s & =\left(1-\frac{1}{3}+\frac{1}{5}\right)-\left(\frac{1}{7}-\frac{1}{9}+\frac{1}{11}\right)+\cdots+(-1)^{n}\left(\frac{1}{6 n+1}-\frac{1}{6 n+3}+\frac{1}{6 n+5}\right)+\cdots \\
& =\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{1}{6 n+1}-\frac{1}{6 n+3}+\frac{1}{6 n+5}\right) \\
& =\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{1}{6 n+1}+\frac{1}{6 n+5}\right)-\sum_{n=0}^{\infty} \frac{(-1)^{n}}{6 n+3} \\
& =\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{12 n+6}{(6 n+1)(6 n+5)}\right)-\sum_{n=0}^{\infty} \frac{(-1)^{n}}{6 n+3} \\
s & =A-B \tag{7}
\end{align*}
$$

Now proceeding as in case of second derivation, it is not difficult to see that

$$
A=\frac{4}{3}{ }_{4} F_{3}\left[\begin{array}{cccc}
1, & \frac{3}{2}, & \frac{1}{6}, & \frac{5}{6} \\
\frac{1}{2}, & \frac{7}{6}, & \frac{11}{6} & ;-1
\end{array}\right]=\frac{\pi}{3},
$$

by using (5), by letting $a=1, b=\frac{1}{6}$ and $c=\frac{5}{6}$ and

$$
B=\frac{1}{3}{ }_{2} F_{1}\left[\begin{array}{ccc}
1, & \frac{1}{2} & \\
\frac{3}{2} & & ;-1
\end{array}\right]=\frac{\pi}{12},
$$

by using (3), by letting $a=1$ and $b=\frac{1}{2}$.
Thus by (7), we have

$$
s=\frac{\pi}{3}-\frac{\pi}{12}=\frac{\pi}{4} .
$$

Remark 1. For an interesting generalization of the Gregory-Leibniz π-series, we refer a very recent paper by Rathie and Paris [5].

References

[1] G. E. Andrews, R. Askey, and R. Roy, Special Functions, Cambridge University Press, Cambridge, 2000.
[2] W. N. Bailey, Generalized Hypergeometric Series, Cambridge University Press, Cambridge, 1935; Reprinted by Stechert-Hafner, New York, 1964.
[3] A. P. Prudrukov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 3; More special functions, Gordon Breach Science Publishers, Amsterdam, 1990.
[4] E. D. Rainville, Special Functions, The Macmillan Company, New York. 1960; Reprinted by chelsea Publishing Company, Bronx, NY, 1971.
[5] A. K. Rathie, and R. B. Paris, A note on applications of the Gregory-Leibniz series for π and its generalization, The Mathematics Student 91 (2022), no. 3-4, 43-53.
[6] L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, 1966.
D. Lim

Department of Mathematics Education, Andong National University, Andong 36729, Republic of Korea

Email address: dklim@anu.ac.kr
A. K. Rathie

Department of Mathematics, Vedant College of Engineering \& Technology, (Rajasthan Technical University), Bundi-323021, Rajasthan state, India

Email address: arjunkumarrathie@gmail.com

[^0]: Received December 11, 2022; Accepted January 30, 2023.
 2020 Mathematics Subject Classification. 33C15, 33C20.
 Key words and phrases. Gregory-Leibniz π-series, hypergeometric series, Kummer-summation theorem, Dixon summation theorem.
 The work of D. Lim was partially supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) NRF-2021R1C1C1010902.
 *Corresponding Author.

