
East Asian Math. J.

Vol. 39 (2023), No. 3, pp. 291–298

http://dx.doi.org/10.7858/eamj.2023.021

ANALYSIS OF THE SECURITY OF GENERIC

HOMOMORPHIC AUTHENTICATED ENCRYPTION

Jinsu Kim∗

Abstract. Recently, a new type of encryption called Homomorphic Au-

thenticated Encryption (HAE) has been proposed. This combines the func-

tionality of homomorphic encryption with authentication. Several concrete
HAE schemes have been developed and security results for homomorphic

authenticated encryption, designed by combining a homomorphic message

authentication scheme with a homomorphic secret-key encryption, have
been partially reported.

In this paper, we analyze the security of a design method that combines

homomorphic message authentication and homomorphic encryption, with
a focus on the encryption after authentication (EAA) type. The results of

our analysis show that while non-forgeability and indistinguishability are
maintained, strong non-forgeability is not.

1. Introduction

Homomorphic encryption is a promising approach to enhance information
security in cloud computing environments ([3], [6], [7]). It enables operations
to be performed on plaintext while it remains encrypted, allowing for the pro-
cessing of information without the need for decryption. However, the reliability
of the results of these operations is not guaranteed. This is because the sub-
ject of the operation may use an arbitrary ciphertext other than the intended
one, or a third-party may generate a random ciphertext and manipulate the
operation results on the cloud server. To address this issue, homomorphic au-
thenticated encryption, which provides both encryption and authentication, has
been recently proposed in studies ([8], [5], [11]).

The first homomorphic authenticated encryption scheme was proposed by
Joo et al. [8]. Their scheme was designed to provide both indistinguishability
and strong non-forgeability against chosen plaintext attackers, using the approx-
imate greatest common divisor problem. However, the size of the ciphertext was

Received December 09, 2022; Accepted January 26, 2023.

2010 Mathematics Subject Classification. 11A11.
Key words and phrases. Homomorphic authenticated encryption, HAE, Security, Non-

forgeability, Indistinguishability.
This research was supported by Korea Naval Academy Institute for Ocean Research(2022).
∗Corresponding Author.

©2023 The Youngnam Mathematical Society
(pISSN 1226-6973, eISSN 2287-2833)

291

292 J. KIM

increased to support the multiplication operation in their scheme. To address
this issue, Struck et al. [11] proposed a more efficient public-key type homomor-
phic authenticated encryption scheme, which only supports the addition op-
eration. This scheme provides indistinguishability and non-forgeability against
a chosen ciphertext attacker. Another efficient symmetric-key type homomor-
phic authenticated encryption, also supporting only the addition operation, was
later proposed [5]. However, its security level is relatively low compared to other
homomorphic authenticated encryption schemes. All of these schemes prevent
plaintext exposure by encrypting the data with a randomized label used for
authentication, similar to the generic encryption-after-authentication (EAA)
construction [2]. However, this design approach has yet to be analyzed.

In this work, we perform a security analysis of the EAA type homomorphic
authenticated encryption. Our analysis shows that if a homomorphic authen-
ticated encryption scheme is constructed using a non-forgeable homomorphic
message authentication code, it also exhibits non-forgeability. However, this
does not hold for the stronger property of strong forgery. On the other hand, we
confirm that the indistinguishability property is satisfied when a homomorphic
authenticated encryption is designed using a homomorphic secret-key encryp-
tion that itself has indistinguishability.

The remainder of the paper is structured as follows. In Section 2, we provide
definitions and relevant terms for our security analysis. In Section 3, we present
the results of our analysis of the encryption-after-authentication (EAA) type
homomorphic authenticated encryption. Finally, in Section 4, we present our
conclusions and discuss potential future work.

2. Definitions and Related Terms

In order to analyze the security of the combined homomorphic authentication
encryption (EAA), we define terms related to the homomorphic authentication
encryption and the homomorphic message authentication scheme. Some nota-
tions and definitions refer to references ([8], [9], [10], [1], [4]).

2.1. Homomorphic Message Authentication

The homomorphic message authentication scheme (HMAC) consists of the
following four probabilistic polynomial time algorithms.

• (ek, sk) ← KeyGen(1λ): an operation key ek and a secret key sk are
outputted for the security parameter λ.

• µ← Aut(τ,m, sk): given a label τ ∈ L and a secret key sk, a tag µ ∈ T
is outputted for the message m.

• µ ← Eval(ek, f, µ1, · · · , µl): given an evaluation key ek, an function
f : M l → M and l number of tags, µ1, · · · , µl ∈ T , this algorithm
outputs a tag µ ∈ T .

A STUDY ON THE GENERICALLY DESIGNED HAE 293

• h → V er((f, τ1, · · · , τl),m, µ, sk): given a secret key sk, a labeled pro-
gram (f, τ1, · · · , τl), a message m ∈M and a tag µ ∈ T , this algorithm
outputs the verification result as a bit h ∈ {0, 1}.

The security of the homomorphic message authentication scheme is deter-
mined whether or not an attacker can arbitrarily create a forgery without secret
information. The attack model is divided into two types of attacks, a chosen
plaintext attack and a chosen authentication attack, depending on the level of
the attacker’s ability. In the case of a chosen plaintext attack, an attacker can
obtain authentication by querying an arbitrary plaintext, whereas in the case
of a chosen authentication attack, a verification query for authentication is also
possible in addition to an authentication query for plaintext [1]. In both cases,
the label used to generate the result of the attacker’s authentication query is
not recycled and must be used only once.

Forgery, which is an attacker’s goal for HMAC, is defined in two forms as
follows.

• 1 = V er((f, τ1, · · · , τl),m′, µ′, sk), and f(mi)i∈I is not constant.
• 1 = V er((f, τ1, · · · , τl),m′, µ′, sk), and f(mi)i∈I is constant.
But, f(mi)i∈I ̸= m′

where I is the set of indices used for the label, f(mi)i∈I is a function whose
domain is M l−|I| and its range is M .

Another type of forgery, strong forgery, is defined in two forms as follows. By
definition, strong forgery includes all forgery.

• 1 = V er((f, τ1, · · · , τl),m′, µ′, sk), and f(mi)i∈I or Eval(f, µ1, · · · , µl, ek)
is not constant.

• 1 = V er((f, τ1, · · · , τl),m′, µ′, sk), and f(mi)i∈I or Eval(f, µ1, · · · , µl, ek)
is constant. But, f(mi)i∈I ̸= m′ or Eval(f, µ1, · · · , µl, ek) ̸= µ′

Based on the definition of forgery, the non-forgeability for the chosen message
attacker is defined as the following game, UF − CMAλ

A.

• Initialization : The challenger is issued an evaluation key ek and a secret
key sk for security parameter λ, and ek is passed to the attacker.

• Queries : To the attacker’s authentication query for τ,m, the challenger
calculates µ = Aut(τ,m, sk) and responds to the attacker.

• Finalization : The attacker submits a forgery attempt ((f, τ1, · · · , τl),m′, µ′)
to the challenger. The challenger checks whether it is a forgery, outputs
1 if it is a forgery, and 0 if it is not, and ends the game.

The advantage of attacker in the above game is defined as follows.

AdvUF−CMA
HMAC,A (λ) := Pr[UF − CMAλ

A = 1]

If the value is negligible for a probabilistic polynomial-time attacker, the
homomorphic message authentication scheme is said to have non-forgeability
against a chosen plaintext attacker.

294 J. KIM

Similarly, based on the definition of strong non-forgeability, the strong non-
forgeability for the attacker is defined as the above game. (In the finalization
phase, it is checked whether it is a strong forgery or not.) The advantage of
attacker in the game is defined as follows.

AdvSUF−CMA
HMAC,A (λ) := Pr[SUF − CMAλ

A = 1]

The non-forgeability for the chosen tag attacker is defined as the following
game, UF − CTAλ

A.

• Initialization : The challenger is issued an evaluation key ek and a secret
key sk for security parameter λ, and ek is passed to the attacker.

• Queries : To the attacker’s authentication query for τ,m, the challenger
calculates µ = Aut(τ,m, sk) and responds to the attacker. On the other
hand, for each verification query ((f, τ1, · · · , τl),m, µ) of A, give b ←
V er((f, τ1, · · · , τl),m′, µ′, sk) to A as an answer for the query.

• Finalization : The attacker submits a forgery attempt ((f, τ1, · · · , τl),m′, µ′)
to the challenger. The challenger checks whether it is a forgery, outputs
1 if it is a forgery, and 0 if it is not, and ends the game.

The advantage of attacker in the above game is defined as follows.

AdvUF−CTA
HMAC,A (λ) := Pr[UF − CTAλ

A = 1]

If the value is negligible for a probabilistic polynomial-time attacker, the
homomorphic message authentication scheme is said to have non-forgeability
against a chosen plaintext attacker.

Similarly, based on the definition of strong non-forgeability, the strong non-
forgeability for the attacker is defined as the above game. (In the finalization
phase, it is checked whether it is a strong forgery or not.) The advantage of
attacker in the game is defined as follows.

AdvSUF−CTA
HMAC,A (λ) := Pr[SUF − CTAλ

A = 1]

2.2. Homomorphic Authenticated Encryption

The homomorphic authenticated encryption scheme (HAE) consists of the
following four probabilistic polynomial-time algorithms.

• (ek, sk) ← KeyGen(1λ): an operation key ek and a secret key sk are
outputted for the security parameter λ.

• c← Enc(τ,m, sk): given a label τ ∈ L and a secret key sk, a cipher-text
c ∈ C is outputted for the message m.

• c′ ← Eval(f, c1, · · · , cl, ek): given an evaluation key ek, an function
f : Cl → C and l number of cipher-texts, c1, · · · , cl ∈ C , this algorithm
outputs a cipher-texts c′ ∈ C.

• m or ⊥ → Dec((f, τ1, · · · , τl), c̄, sk): given a secret key sk, a labeled
program (f, τ1, · · · , τl), a cipher-text c̄ ∈ C, this algorithm outputs a
message m or ⊥.

A STUDY ON THE GENERICALLY DESIGNED HAE 295

The attacker’s goals for homomorphic authenticated encryption are to de-
crypt the cipher-text and forge it. Forgery, and its strong variant are defined in
two forms as follows in a manner similar to the homomorphic message authen-
tication scheme.

Forgery

• Dec((f, τ1, · · · , τl), c′, sk) ̸= ⊥, and f(mi)i∈I is not constant.
• Dec((f, τ1, · · · , τl), c′, sk) ̸= ⊥, and f(mi)i∈I is constant.
But, Dec((f, τ1, · · · , τl), c′, sk) ̸= f(mi)i∈I

Strong forgery

• Dec((f, τ1, · · · , τl), c′, sk) ̸= ⊥, and f(mi)i∈I or Eval(f, c1, · · · , cl, ek)
is not constant.
• Dec((f, τ1, · · · , τl), c′, sk) ̸= ⊥, and f(mi)i∈I and Eval(f, c1, · · · , cl, ek)
is constant.Dec((f, τ1, · · · , τl), c′, sk) ̸= f(mi)i∈I or Eval(f, c1, · · · , cl, ek) ̸=
c′

where I is the set of indices used for the label, f(mi)i∈I is a function whose
domain is M l−|I| and its range is M .

Based on these definitions, the (strong) non-forgeability for the chosen plain-
text or cipher-text attacker is defined similar to the homomorphic message au-
thentication scheme. IND-CPA and IND-CCA security of HAE is defined in a
manner similar to the traditional secret-key encryption scheme.

3. Security Analysis

One common way to design a homomorphic authenticated encryption is to
combine a homomorphic encryption with a homomorphic message authentica-
tion scheme. Specifically, one method is to generate authentication for plaintext
and then encrypt it. The homomorphic authenticated encryption designed in
this way is called HAEEAA, it is composed of the following key generation
(KeyGen), encryption (Enc), operation (Eval), and decryption (Dec) algo-
rithms.

HAEEAA :

• (ek, sk) ← KeyGen(1λ): an operation key ek = (HSE.ek,HMAC.ek)
and a secret key sk = (HSE.sk,HMAC.sk) are outputted viaHSE.Key
−Gen(1λ), HMAC.KeyGen(1λ) for the security parameter λ.
• c← Enc(τ,m, sk): given a label τ ∈ L and a secret key sk, a cipher-text
c = HSE.Enc((m,µ), HSE.sk) is outputted for the message m after
the authentication µ = HMAC.Aut(τ,m,HMAC.sk).
• c′ ← Eval(f, c1, · · · , cl, ek): given an evaluation key ek, an function
f : Cl → C and l number of cipher-texts, c1, · · · , cl ∈ C , this algorithm
outputs a cipher-texts c′ ∈ C.
• m or ⊥ → Dec((f, τ1, · · · , τl), c̄, sk): given a secret key sk = (HSE.sk,
HMAC.sk), a labeled program (f, τ1, · · · , τl), a cipher-text c̄ ∈ C,
this algorithm decrypt (m,µ)¸HSE.Dec(c,HSE.sk), then verify h ←

296 J. KIM

HMAC.V er((f, τ1, · · · , τl),m, µ,HMAC.sk). If h = 1, then return m.
Otherwise, return ⊥.

The following theorem shows the homomorphic authenticated enryption,
HAEEAA, preserves IND-CPA security.

Theorem 3.1. If the homomorphic secret-key encryption (HSE) is IND-CPA,
then the homomorphic authenticated encryption (HAEEAA) is also IND-CPA.

Proof. Let A be a PPT adversary for the game IND-CPA of HAEEAA. We
can construct another adversary A′ for the game IND-CPA of HSE from A as
follows.

• Initialization :For a given key HSE.ek, A′ generate a pair of keys
(HMAC.ek,HMAC.sk)← HMAC.KeyGen(1λ). Then ek = (HSE.ek,
HMAC.ek) is given to A.

• Queries : For each encryption query τ,m of A, A′ get µ← HMAC.Aut
(τ,m,HMA.sk), and an answer c from the encryption oracleHSE.Enc.
Return c to A′ as an answer for the query.

• Challenge : For the challenge (τ∗,m∗
0,m

∗
1) of A, A′ get tags, µ∗

b ←
HMAC.Aut(τ∗,m∗

b , HMAC.sk) for each b ∈ {0, 1}, and the random
challenge ciphertext c∗ from the encryption oracle, HSE.Enc. A′ gives
c∗ to A.

• Queries : Proceed in the same way as in the previous queries.
• Finalization : For the output bit h ∈ {0, 1} of A, A′ submits her result
h′ = h.

Therefore, from the above simulation, AdvIND−CPA
HSE,A′ (λ) is non-negligible if

AdvIND−CPA
HAE,A (λ) is non-negligible.

□

The following theorem shows the homomorphic authenticated enryption,
HAEEAA, preserves also non-forgeability security.

Theorem 3.2. If HMAC is UF − CMA, then HAEEAA is UF − CPA. .

Proof. Let A be a PPT adversary for the game UF-CPA of HAEEAA. We can
construct another adversary A′ for the game UF-CMA of HMAC from A as
follows.

• Initialization :For a given key HMAC.ek, A′ generate a pair of keys
(HSE.ek,HSE.sk)← HSE.KeyGen(1λ). Then ek = (HSE.ek, HMAC.ek)
is given to A.

• Queries : For each encryption query (τ,m) of A, A′ get µ from the
authentication oracle, and an answer c = HSE.Enc((m,µ), HSE.sk)
from the encryption oracle HSE.Enc. A′ gives c to A as an answer for
the query.

• Finalization : For the forgery attempt ((f, τ, · · · , τl), c′) of A, A′ output
((f, τ, · · · , τl),m′, µ′), where (m′, µ′)← HSE.Dec(c′, HSE.sk).

A STUDY ON THE GENERICALLY DESIGNED HAE 297

Therefore, from the above simulation,AdvUF−CMA
HMAC,A′ (λ) is non-negligible

if AdvUF−CPA
HAE,A (λ) is non-negligible.

□

Similarly, we can show its non-forgeability against chosen cipher-text at-
tacker.

Corollary 3.1. If HMAC is UF − CTA, then HAEEAA is UF − CCA.

Proof. The only difference is the query phase in the previous game. Therefore,
we only describe the query phase.

• Queries : For each encryption query (τ,m) of A, A′ get µ from the
authentication oracle, and an answer c = HSE.Enc((m,µ), HSE.sk)
from the encryption oracle HSE.Enc. A′ gives c to A as an answer for
the query. For each decryption query ((f, τ1, · · · , τl), c), A′ has (m,µ),
and an verification result h fromHSE.Dec(c,HSE.sk) andHMAC.V er
((f, τ1, · · · , τl),m, µ). If h = 1, A′ gives m to A. Otherwise, A′ gives ⊥.

Therefore, from the above simulation, AdvUF−CTA
HMAC,A′(λ) is non-negligible if

AdvUF−CCA
HAE,A (λ) is non-negligible.

□

Unlike in previous cases, the homomorphic authenticated encryption does
not preserve the strong non-forgeability.

Theorem 3.3. The HAEEAA does not preserve the strong non-forgeability
security of an HMAC.

Proof. Due to its homomorphic property, we can easily produce another cipher-
text c′ that has the same decryption result of A. This means that c′ is a strong
forgery in HAEEAA by definition of the strong forgery.

□

4. Conclusion

In this work, we analyzed the security level of homomorphic authenticated en-
cryption synthesized by combining a homomorphic message authentication code
and a homomorphic secret-key encryption. We focused on the encryption-after-
authentication (EAA) type of generic design methods for homomorphic authen-
ticated encryption. Through the definition of relevant terms and the applica-
tion of simulation and reduction processes, we showed that the non-forgeability
and indistinguishability properties of the homomorphic message authentication
scheme are preserved in the homomorphic authenticated encryption. However,
strong non-forgeability is not guaranteed due to the homomorphic property. As
a future research direction, it will also be important to study the security of
authentication-after-encryption designed homomorphic authenticated encryp-
tion schemes.

298 J. KIM

Acknowledgment

This work is supported by internal funds in Naval Academy, Republic of
Korea.

References

[1] M. Bellare, O. Goldreich, A. Mityagin, The power of verification queries in message

authentication and authenticated encryption, Crypt. ePrint Arch., Rep. 2004/309, (2004).

[2] M. Bellare and C. Namprempre, Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm, J. Crypt., (2008), 469-491.

[3] Z. Brakerski, V. Vaikuntanathan, Efficient fully homomorphic encryption from (stan-

dard) LWE, Found. Comp. Sci. - FOCS 2011, (2011), 97-106.
[4] D. Catalano, D Fiore, Practical homomorphic MACs for arithmetic circuits, Adv. Crypt.

- EUROCRYPT 2013, 7881, (2013), 336-352.
[5] J. Cheon, K. Han, S. Hong, H. Kim, J. Kim, Y. Song, Toward a secure drone sys-

tem: Flying with real-time homomorphic authenticated encryption, IEEE acc., 6, (2018),

24325-24339.
[6] J. Coron, T. Lepoint, M. Tibouchi, Scale-invariant fully homomorphic encryption over

the integers, Pub. Crypt. – PKC 2014, 8383, (2014), 311-328.

[7] C. Gentry, Fully homomorphic encryption using ideal lattices, Proc. of the 41st ann.
ACM symp. on The. comp. - STOC 2009, (2009), 169-178.

[8] C. Joo, A. Yun, Homomorphic authenticated encryption secure against chosen-ciphertext

attack, Int. Conf. The. and App. Crypt. and Inf. Sec., (2014), 173-192.
[9] C. Joo, A. Yun, A strongly unforgeable homomorphic mac over integers, J. Kor. Ins. Inf.

Sec. and Crypt., (2014), 461-475.

[10] J. Kim, Analysis of Homomorphic Authenticated Encryption, Conv. sec. j., 21(1), (2021),
33-44.

[11] P. Struck, L. Schabhüser, D. Demirel, J. Buchmann, Linearly homomorphic authenticated
encryption with provable correctness and public verifiability, Int. Conf. Cod. Crypt. and

Inf. Sec., (2017), 142-160.

Jinsn Kim

(Associate Professor) Division of Science Republic of Korea Naval Academy PO
box number 88-4-1, 1 Jungwon-ro, Jinhae-gu, Changwon-si, Gyungnam, 51704 Republic
of Korea

Email address: nemokjs1@gmail.com

