DOI QR코드

DOI QR Code

A PARTITION OF q-COMMUTING MATRIX

  • Eunmi Choi (Dept. of Mathematics, HanNam University)
  • Received : 2022.12.09
  • Accepted : 2023.05.23
  • Published : 2023.05.31

Abstract

We study divisibilities of elements in the q-commuting matrix C(q). We first make a coefficient matrix Ĉ of C(q) which is independent of q, study divisibilities over Ĉ and then retrieve our findings to C(q). Finally we partition the C(q) into 2 × 2 block matrices.

Keywords

References

  1. E. Choi, Sequential properties over q-commuting arithmetic tables, J. Chungcheong Math. Soc., 32 (2019), 475-490.
  2. H. Cohn, Projective geometry over F1 and the gaussian binomial coefficients, Amer. Math. Monthly, 111 (2004), 487-495.
  3. A. Granville, Arithmetic properties of binomial coefficients I: Binomial coefficients modulo prime powers, Canadian Math. Soc. Proceedings, (1997), 253-275.
  4. M.E. Horn, Pauli Pascal pyramids, Pauli Fibonacci numbers, and Pauli Jacobsthal numbers, arXiv:0711.4030v1 (math.GM), 26 (2007).
  5. W.P. Johnson, An introduction to q-analysis, Amer. Math. Soc., Rhode Island (2020).
  6. C.H. Jones, Generalized hockey stick identity and N-dimensional blockwalking, Fibo. Quart. 34 (1994), 280-288.
  7. D. Stanton, Enumeration and Special Functions, in: Orthogonal Polynomials and Special Functions, E. Koelink, W. Assche (eds.), Lecture Notes in Math., Springer, (2002), 137-166.