DOI QR코드

DOI QR Code

Effect of Relative Humidity on Explosion Pressure for Gas Group IIB, IIA, and I

상대습도에 따른 가스 그룹 IIB, IIA, I의 폭발압력 분석

  • Yongtae Kim (School of Industrial Engineering, University of Ulsan) ;
  • Kihyo Jung (School of Industrial Engineering, University of Ulsan)
  • 김용태 (울산대학교 산업경영공학과) ;
  • 정기효 (울산대학교 산업경영공학과)
  • Received : 2023.01.27
  • Accepted : 2023.03.22
  • Published : 2023.03.31

Abstract

Determination of explosion reference pressure is important in designing and testing flameproof enclosures (Ex d). Although relative humidity affects to explosion pressure, its effect is not well investigated for the gas group IIB, IIA, and I. This study tested explosion pressure for Ethylene (8 vol.%), Propane (4.6 vol.%), and Methane (9.8 vol.%), which are the representative gas of the gas group IIB, IIA, and I, at ambient temperature and atmospheric pressure (1 atm) under different relative humidity (0% ~ 80%). Ethylene- and Propane-air mixed gases generally tended to decrease as the relative humidity increased; however, explosion pressure was largely dropped at 20% of relative humidity compared to 0% and 10% of relative humidity. On the other hand, Methane-air mixture gas showed similar pressures at 0% and 10% of relative humidity; but no explosion occurred at more than 20%. The results of this study can be used in setting a testing protocol of explosion reference pressure for designing and testing a flameproof enclosure.

Keywords

References

  1. J. Y. Choi, S. H. Byeon(2020), "A study on complementary method for hazardous area extent by IEC 60079-10-1 edition 2.0." Journal of Korea Safety Management & Science, 22(2):73-82.
  2. P. Michorczyk, K. Zenczak, R. Niekurzak, J. Ogonowski(2012), "Dehydrogenation of propane with CO2-a new green process for propene and synthesis gas production." Polish Journal of Chemical Technology, 14(4):77-82. https://doi.org/10.2478/v10026-012-0106-1
  3. B. Su, Z. Luo, T. wang, J. Zhang, F. Cheng(2020), "Experimental and principal component analysis studies on minimum oxygen concentration of methane explosion." International Journal of Hydrogen Energy, 45(21):12225-12235. https://doi.org/10.1016/j.ijhydene.2020.02.133
  4. C. Jang, J. W. Kwon, M. H. Hwang(2017), "A study on explosion risk management for oil heater." Journal of Korea Safety Management & Science, 19(3):1-10. https://doi.org/10.12812/ksms.2017.19.1.1
  5. Y. J. Kwon, J. H. Byeon(2020), "A study on the management plan through performance maintenance analysis of explosion-proof facilities." Journal of the Korea Society of Safety, 35(2):8-16. https://doi.org/10.14346/JKOSOS.2020.35.2.8
  6. IEC 60079-14(2014), Explosive atmospheres-Part 1: Equipment protection by flameproof enclosures d. International Electrotechnical Commission(IEC), Geneva, Switzerland.
  7. IECEx Certificates, Search, Filters(2022), IEC Standard (IEC 60079-1). Retrieved July 20, 2022 from https://www.iecex-cert.com/#/search
  8. OSHCI(2022), Statues of safety certificates on explosion-proof electric machines, tools and parts. Retrieved July 20, 2022 from https://miis.kosha.or.kr/oshci/busi/ListExpSafetyCheck.do?searchType=D
  9. M. Mitu, V. Brinzea, A. Musuc, D. Razus, D. Oancea(2011), "Deflagration parameters of propane-air mixtures in a closed cylindrical vessel." University Politehnica of Bucharest Scientific Bulletin series B-Chemistry and Materials Science, 73(3):17-26.
  10. C. Movileanu, V. Gosa, D. Razus(2012), "Explosion of gaseous ethylene-air mixtures in closed cylindrical vessels with central ignition." Journal of Hazardous Materials, 235-236:108-115. https://doi.org/10.1016/j.jhazmat.2012.07.028
  11. D. Razus, V. Brinzea, M. Mitu, D. Oancea(2009), "Explosion characteristics of LPG-air mixtures in closed vessels." Journal of Hazardous Materials, 165:1248-1252. https://doi.org/10.1016/j.jhazmat.2008.10.082
  12. D. Razus, C. Movileanua, D. Oancea(2007), "The rate of pressure rise of gaseous propylene-air explosions in spherical and cylindrical enclosures." Journal of Hazardous Materials, 139:1-8. https://doi.org/10.1016/j.jhazmat.2006.05.103
  13. G. Ciccarelli, Q. Li, C. Metrow(2018), "The three-dimensional structure of a detonation wave propagating in a round tube with orifice plates." Shock Waves, 28(5):1019-1030. https://doi.org/10.1007/s00193-018-0839-8
  14. L. Q. Wang, H. H. Ma, Z. W. Shen(2019), "On the explosion characteristics of hydrogen-air mixtures in a constant volume vessel with an orifice plate." International Journal of Hydrogen Energy, 44:6271-6277. https://doi.org/10.1016/j.ijhydene.2019.01.074
  15. K. Cashdollar, I. Zlochower, G. Green, R. Thomas, M. Hertzberg(2000), "Flammability of methane, propane, and hydrogen gases." Journal of Loss Prevention in the Process Industries, 13(3-5):327-340. https://doi.org/10.1016/S0950-4230(99)00037-6
  16. A. Pekalski, H. Schildberg, P. Smallegange, S. Lemkowitz, J. Zevenbergen, M. Braithwaite, H. Pasman(2005), "Determination of the explosion behaviour of methane and propene in air or oxygen at standard and elevated conditions." Precess Safety and Environmental Protection, 83(B5):421-429. https://doi.org/10.1205/psep.04211
  17. D. Razus, V. Brinzea, M. Mitu, D. Oancea(2010), "Temperature and pressure influence on explosion pressures of closed vessel propane-air deflagrations." Hazardous Materials, 174:548-555. https://doi.org/10.1016/j.jhazmat.2009.09.086
  18. Y. Cao, J. Guo, K. Hu, L. Xie, B. Li(2017), "Effect of ignition location on external explosion in hydrogen-air explosion venting." International Journal of Hydrogen Energy, 42:10547-10554. https://doi.org/10.1016/j.ijhydene.2017.01.095
  19. H. Moradi, F. Sereshki, M. Ataei, M. Nazari(2020), "Evaluation of the effect of the moisture content of coal dust on the prediction of the coal explosion index." Rudarsko-geolosko-naftni Zbormik, 35(1):17-26. https://doi.org/10.17794/rgn.2020.3.2
  20. S. Qi, Y. Du, P. Zhang, G. Li, Y. Zhou, B. Wang(2017), "Effects of concentration, temperature, humidity, and nitrogen inert dilution on the gasoline vapor explosion." Hazardous Materials, 323:593-601. https://doi.org/10.1016/j.jhazmat.2016.06.040
  21. S. Wang, D. Wu, H. Guo, X. Li, X. Pu, Z. Yan, P. Zhang(2020). "Effects of concentration, temperature, ignition energy and relative humidity on the overpressure transients of fuel-air explosion in a medium-scale fuel tank." Fuel, 259:116265.
  22. Y. T. Kim, K. H. Jung(2022), "Relationship analysis between relative humidity and explosion pressure of hydrogen-air and acetylene-air mixtures in flameproof enclosure." Journal of Korea Safety Management & Science, 24(4):101-107. https://doi.org/10.12812/KSMS.2022.24.4.101
  23. IEC 60079-1(2014), Explosive atmospheres-Part 1: Equipment protection by flameproof enclosures d. International Electrotechnical Commission(IEC), Geneva, Switzerland.
  24. ISO/IEC 80079-20-1(2017), Explosive atmospheres-Part 20-1: Material characteristics for gas and vapour classification-Test methods and data.
  25. IEC 60079-2(2014), Explosive atmospheresPart 2: Equipment protection by pressurized enclosure p. International Electrotechnical Commission(IEC), Geneva, Switzerland.
  26. G. Harris, P. Briscoe(1967), "The effect of vessel size and degree of turbulence on gas phase explosion pressures in closed vessels," Combust and Flame, 11:17-25. https://doi.org/10.1016/0010-2180(67)90005-3