DOI QR코드

DOI QR Code

파일 항타진동이 인접 비탈면에 미치는 영향

Influence of Pile Driving-Induced Vibration on the Adjacent Slope

  • 곽창원 (인하공업전문대학 건설환경공학과 )
  • Kwak, Chang-Won (Dept. of Civil & Environmental Engineering, Inha Technical College)
  • 투고 : 2023.03.21
  • 심사 : 2023.03.30
  • 발행 : 2023.05.31

초록

말뚝은 상부 구조물의 하중을 지지층으로 전달하는 구조체로 국내외 건설 현장에서 널리 사용되고 있다. 말뚝을 시공하는 방법은 지반조건, 시공위치, 주변현황, 환경적 요소, 공사비 등을 종합적으로 고려하여 결정하며 크게 직항타에 의한 타입방식과 선굴착 후 경타 또는 항타하는 방식으로 나눌 수 있다. 이 중 직항타는 말뚝 두부를 해머로 항타하여 원지반 내 소정의 심도까지 근입시키므로 항타 시 가해지는 에너지가 크고 이에 따른 항타진동 및 소음도 증가한다. 말뚝의 항타진동은 주변 시설물 및 지반에 영향을 미치므로 그 영향을 정량적으로 파악할 필요가 있다. 본 연구에서는 말뚝의 항타진동을 시간영역에서 산정하고, 직항타 시 말뚝과 인접하여 위치한 굴착면 및 가시설에 대하여 항타진동에 의한 영향을 유한차분해석법에 의한 2차원 동적수치해석을 통하여 분석하였다. 그 결과 파의 반사 및 재료감쇠가 적은 지표면에서 표면파에 의하여 지중보다 변위가 현저히 크게 발생하는 경향을 나타내었고 전체 변위 크기는 이격거리 증가에 따라 감소하나 수평방향 변위는 진동원과 먼 사면 상단부에서 연직방향 대비 더 큰 값을 보이며 법면부에 변위가 집중적으로 발생하는 특징을 확인하였다.

A pile is a structural element that is used to transfer external loads from superstructures and has been widely utilized in construction fields all over the world. The method of installing a pile into the ground should be selected based on geotechnical conditions, location, site status, environmental factors, and construction costs, among others. It can be divided into two types: direct hammering and preboring. The direct hammering method installs a pile into the bearing layer, such as rock, using a few types of hammer, generating a considerable amount of pile driving-induced vibration. The vibration from pile driving influences adjacent structures and the ground; therefore, quantitatively investigating the effects of vibration is inevitably required. In this study, two-dimensional dynamic numerical modeling and analysis are performed using the finite difference method to investigate the influence on the adjacent slope, including temporary supporting system. Time-dependent loading induced by pile driving is estimated and used in the numerical analysis. Consequently, large surface displacement is estimated due to surface waves and less wave deflection, and refraction at the surface. The total displacement decreases with the increase of the distance from the source. However, lateral displacement at the top of the slope shows a larger value than vertical displacement, and the overall displacement tends to be concentrated near the face of the slope.

키워드

과제정보

본 논문은 2022년도 인하공업전문대학 학술연구사업 지원에 의하여 연구되었습니다. 연구지원에 감사드립니다.

참고문헌

  1. Choi, G.N. and Yoo, C.S. (2011), "Numerical Investigation on Load Supporting Mechanism of a Pile Constructed above Underground Cavity", Journal of the Korean Geotechnical Society, Vol.27, No.1, pp.5-16.  https://doi.org/10.7843/KGS.2011.27.1.005
  2. Cleary, J.C. and Steward, E.J. (2016), "Analysis of Ground Vibrations Induced by Pile Driving and a Comparison of Vibration Prediction Methods", The Journal of the Deep Foundations Institute, Vol.10, No.3, pp.125-134.  https://doi.org/10.1080/19375247.2017.1288855
  3. Colaco, A., Alves, C.P., Mont'Alverne, P.C., and Silva, C.A. (2021), "Ground-borne Noise and Vibrations in Buildings Induced by Pile Driving: An Integrated Approach", Applied Acoustics, Vol.179, No.108059, https://doi.org/10.1016/j.apacoust.2021.108059 
  4. Daryaei, R., Bakroon, M., Aubram, D., and Rackwitz, F. (2020), "Numerical Evaluation of the Soil behavior during Pipe-pile Installation Using Impact and Vibratory Driving in Sand", Soil Dynamics and Earthquake Engineering, Vol.134, doi.org/10.1016/j.soildyn.2020.106177. 
  5. Hindmarsh, J.J. and Smith, W.L. (2018), "Quantifying Construction Vibration Effects on Daily Radiotherapy Treatments", Journal of Applied Clinical Medical Physics, Vol.19, No.5, pp.733-738.  https://doi.org/10.1002/acm2.12386
  6. Homayoun, R.A.F. and Hamidi, A. (2019), "A Numerical Model for Continuous Impact Pile Driving Using ALE Adaptive Mesh Method", Soil Dynamics and Earthquake Engineering, Vol.118, pp.134-143.  https://doi.org/10.1016/j.soildyn.2018.12.014
  7. Hong, S.W. and Lee, W.J. (1992), "Research and Practice of Deep Foundations : Survey of Pile Foundation Construction Practice in Korea and Ground Vibration induced by Pile Driving", Proceedings of the Korean Geotechnical Society, No.1, pp.115-135. 
  8. Itasca Consulting Group. (2001), "Fast Lagrangian Analysis of Continua", Program Manual. 
  9. Jayawardana, P., Achuhan, R., Silva, G.H.M.J.S.D., and Thambiratnam, D.P. (2018), "Use of In-filled Trenches to Screen Ground Vibration due to Impact Pile Driving: Experimental and Numerical Study", Heliyon, No. e00726, doi: 10.1016/j.heliyon.2018.e00726. 
  10. Kim, S.K. (2020), "Evaluation of Stability of Reinforced Earth Retaining Walls by Pile Construction", M.S thesis, Department of Civil Engineering Graduate School, Dongshin University, pp.77-79. 
  11. Kim, S.R. and Chung, S.G. (2007), "Pile and Ground Responses during Drivig n of a Long PHC Pile in Deep Soft Clay", Journal of the Korean Geotechnical Society, Vol.23, No.5, pp.131-141.  https://doi.org/10.7843/KGS.2007.23.5.131
  12. Korean Design Standard 11 90 00 (2020), Korea Construction Standard Center, pp.4. 
  13. Kwak, K.S. and Kim, J.S. (2000), "A Study on the Effect of Piling Vibration by Oil Pressure Method on the Building", Journal of the Architectural Institute of Korea, Vol.20, No.2, pp.817-820. 
  14. Kwon, S.Y., Kim, S.J., and Yoo, M.T. (2016), "Numerical Simulation of Dynamic Soil-pile Interaction for Dry Condition Observed in Centrifuge Test", Journal of the Korean Geotechnical Society, Vol. 32, No.4, pp.5-14.  https://doi.org/10.7843/KGS.2016.32.4.5
  15. Lee, S.H., Lee, J.K., Yoo, W.K., and Kim, B.I. (2007), "A Study on Vibratory Behavior of Steel Sheet Pile Installed in Sand Ground", Journal of the Korean Geotechnical Society, Vol.23, No.4, pp. 79-90.  https://doi.org/10.7843/KGS.2007.23.4.79
  16. Masoumi, H.R. and Degrande, G. (2008), "Numerical Modeling of Free Field Vibrations due to Pile Driving Using a Dynamic Soil-structure Interaction Formulation", Journal of Computational and Applied Mathematics, Vol.215, pp.503-511.  https://doi.org/10.1016/j.cam.2006.03.051
  17. Massarsch, K.R. and Fellenius, B.H. (2015), "Engineering Assessment of Ground Vibrations Caused by Impact Pile Driving", Geotechnical Engineering Journal of the SEAGS & AGSSEA, Vol.46, No.2, pp. 54-63. 
  18. Paik, K.H. (2001), "Effect of Pile Driving Energy on Steel Pipe Pile Capacity in Sands", Journal of the Korean Geotechnical Society, Vol.17, No.6, pp.99-110. 
  19. Park, J.B. (2009), "The Influence of Ground Vibration Caused by Pile Driving on Power Line Tower Foundation", Explosives & Blasting, Vol.27, No.2, pp.42-47. 
  20. Park, S.J, Kang, S.H., and Jung, S.G. (2010), "Estimate of Ground Vibration and Noise Responses by the Pile Driving Methods", Proceedings of Korean Society of Civil Engineers, pp.1353-1356. 
  21. Park, Y.S. and Chon, C.S. (1989), "Measurement and Control of Ground Vibrations due to Precast Concrete Pile-driving by Diesel Hammer", Journal of Korean Society of Civil Engineers, Vol.9, No.1, pp.71-78. 
  22. Rahman, N.A.A., Musir, A.A., Dahalan, N.H., Ghani, A.N.A., and Khalil, M.K.A. (2017), "Review of Vibration Effect during Piling Installation to Adjacent Structure", Proceedings of AIP Conference, Vol.1901, No.1, pp.110009-1-110009-10. 
  23. Ramshaw C.L., Selby A.R., and Bettes A.R. (2000), "Computation of Ground Waves due to Piling in Application of Stress Wave Theory to Piles", pp.495-502. 
  24. Song, S.M., Park, J.J., and Jeong, S.S. (2022), "The Analysis of Single Piles in Weathered Soil with and without Ground Water Table under the Dynamic Condition", Journal of the Korean Geotechnical Society, Vol.38, No.1, pp.17-33. https://doi.org/10.7843/KGS.2022.38.1.17