DOI QR코드

DOI QR Code

암석절리면 전단강도 예측모델 및 영향요소에 관한 연구

Study on the Estimation Model of Shear Strength at Rock Joint and Its Influence Factor

  • 손무락 (대구대학교 건설시스템공학과)
  • Son, Moorak (Dept. of Civil Engineering, Daegu Univ.)
  • 투고 : 2023.01.26
  • 심사 : 2023.04.04
  • 발행 : 2023.05.31

초록

본 연구에서는 암석절리면의 전단강도를 예측하기 위한 기존 여러 모델들에 대해서 조사하고 관련 문제점을 제시함과 더불어 문제점 극복을 위해 새롭게 제안된 모델에 대해서 소개한다. 많은 실험적 결과에 따르면 암석 절리면에서의 전단강도는 절리돌기 각도, 압축강도, 작용 수직응력, 마찰각 및 절리돌기 점착강도, 절리돌기의 점진적 손상을 포함한 많은 복합요인에 따라 달라짐에도 불구하고 기존 강도예측 모델은 이러한 요소들을 충분히 고려하지 못한 점이 있었다. 이러한 문제점을 극복하기 위해 Son(2020)은 새로운 절리면 전단강도 예측모델을 개발하고 그 신뢰성을 실험결과 및 기존 모델과 비교하여 확인한 바 있다. 본 논문에서는 개발모델을 이용하여 절리면 전단강도에 영향을 미치는 여러 요소들에 대해서 조사하고 그 결과를 비교분석 하였다. 본 연구를 통해서 암석절리면 전단강도에 영향을 미치는 요소들에 대하여 보다 자세히 파악할 수 있었다.

This study investigates the existing models for estimating the shear strength of rock joints, presents related problems, and introduces a newly proposed model to overcome the problems. The results of many experimental tests show that the shear strength of a rock joint depends on many complex factors, including asperity angle, compressive strength, applied normal stress, friction angle, asperity cohesive strength, and progressive damage of asperities. However, the existing models do not account for these factors enough. To overcome these problems, Son (2020) developed a new model to estimate the shear strength of rock joints and confirmed its reliability by comparing with experimental results and existing models. In this paper, the developed model was used to investigate the various factors that affect the joint shear strength, and the results were compared and analyzed. Through this study, the factors that affect the shear strength of the rock joint could be identified in more detail.

키워드

참고문헌

  1. Asadi, M.S. and Rasouli, V. (2012), "Physical Simulation of Asperity Degradation Using Laboratorial Shear Tests of Artificial Fractures", Proceedings of EUROCK 2012, ISRM International Symposium: Rock Engineering and Technology for Sustainable Underground Construction, May 28-30, Stockholm, Sweden, p.14. 
  2. Barton, N. (1973), "Review of a New Shear Strength Criterion for Rock Joints", Engineering Geology, Vol.7, No.4, pp.287-332.  https://doi.org/10.1016/0013-7952(73)90013-6
  3. Barton, N. (1976), "The Shear Strength of Rock and Rock Joints. Int", J. Rock Mech. Min. Sci., Vol.13, No.9, pp.255-279.  https://doi.org/10.1016/0148-9062(76)90003-6
  4. Barton, N. and Bandis, S. (1982), "Effects of Block Size on the Shear behaviour of Jointed Rock", 23rd U.S. Symp. on Rock Mechanics, Berkeley, USA, pp.739-760. 
  5. Barton, N. and Choubey, V. (1977), "The Shear Strength of Rock Joints in Theory and Practice", Rock mechanics and Rock engineering, Vol.10, No.1-2, pp.1-65.  https://doi.org/10.1007/BF01261801
  6. Grasselli, G. (2001), "Shear Strength of Rock Joints based on Quantified Surface Description", Ph.D thesis, Univerist? di Parma, Italy. 
  7. Huang, T. H. and Doong, Y. S. (1990), "Anisotropic Shear Strength of Rock Joints", Proc., Int. Symp. on Rock Joints, Loen, Norway, pp.211-218. 
  8. Jang, H.S., Sim, M.Y., and Jang, B.A. (2021), "New Joint Roughness Coefficient and Shear Strength Criterion Based on Experimental Verification of Standard Roughness Profile", J. of Engineering Geology, Vol.31, No.4, pp.561-577. 
  9. Jing, L. (1990), "Numerical Modeling of Jointed Rock Masses by Distinct Element Method for Two, and Three-dimensional Problems", PhD thesis, Lulea University of Technology, Lulea. 
  10. Johnston, I. W. and Lam, T. S. K. (1989), "Shear behavior of Regular Triangular Concrete/rock Joints Analysis", Journal of geotechnical engineering, Vol.115, No.5, pp.711-727.  https://doi.org/10.1061/(ASCE)0733-9410(1989)115:5(711)
  11. Jing, L., Nordlund, E., and Stephansson, O. (1992), "An Experimental Study on the Anisotropy and Stress-dependency of the Strength and Deformability of Rock Joints", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol.29, No.6, pp.535-542.  https://doi.org/10.1016/0148-9062(92)91611-8
  12. Kim, D.Y. (2002), "Roughness Effects on the Shear Behavior Rock Joints", J. of Korean Geotechnical Society, Vol.18, No.3, pp.56-57. 
  13. Kim, D.B., Lee, S.G., and Lee, J.I. (2001), "The Engineering Properties of Shear Strength of Rock Joints in Korea", J. of Korean Geotechnical Society, Vol.17, No.4, pp.301-315. 
  14. Kim, D.Y. and Lee, Y.N. (2007), "New Peak Shear Strength Criteria for Anisotropic Rock Joints Using Quantified Joint Roughness Parameters", 11th Congress of the International Society for Rock mechanics, Lisbon, pp.355-358. 
  15. Kwon, J.W., Kim, S.M., and Yoon, J.S. (2000), "A Study on Residual Stress Characteristics for Joint of Rock in Ring Shear Tests", J. of Korean Geotechnical Society, Vol.16, No.6, pp.35-41. 
  16. Ladanyi, B. and Archambault, G. (1970), "Simulation of the Shear behavior of a Jointed Rock Mass", Proc. 11th. U.S. Symp. on Rock Mechanics, pp.105-125. 
  17. Lee, I-M, Hong, E-S, Bae, S-I, and Lee, S-W (2002), "Analysis of the Rock Joint Strength Characteristics Using New Rock Joint Roughness Quantification Method", J. of Korean Geotechnical Society, Vol. 18, No.4, pp.229-238. 
  18. Lee, S-W, Hong, E-S, Bae, S-I, and Lee, I-M (2006), "Modelling of Rock Joint Shear Strength Using Surface Roughness Parameter, Rs", Tunn. Undergr. Sp. Tech., Vol.21, No.3-4. 
  19. Lee, Y-K, Park, J-W, and Song, J-J (2014), "Model for the Shear behavior of Rock Joints under CNL and CNS Conditions", Int. J. Rock. Mech. Min. Sci., Vol.70, No.9, pp.252-263.  https://doi.org/10.1016/j.ijrmms.2014.05.005
  20. Newland, P. L. and Allely, B. H. (1957), "Volume Changes in Drained Triaxial Tests on Granular Materials", Geotechnique, Vol.7, No.1, pp.17-34.  https://doi.org/10.1680/geot.1957.7.1.17
  21. Oh, J. (2005), "Three Dimensional Numerical Modeling of Excavation in Rock with Dilatant Joints", Ph.D. Dissertation, University of Illinois at Urbana-Champaign. 
  22. Patton, F. D. (1966), "Multiple Modes of Shear Failure in Rock", Proc. 1st Congr. Int. Soc. Rock Mech., Lisbon, pp.509-513. 
  23. Plesha, M. E. (1987), "Constitutive Models for Rock Discontinuities with Dilatancy and Surface Degradation", Int. J. Numer. Anal. Meth. Geomech., Vol.11, No.4, pp.345-362.  https://doi.org/10.1002/nag.1610110404
  24. Reeves, M. J. (1985), "Rock Surface Roughness and Frictional Strength", Int. J. of Rock Mech. and Min. Sci. and Geo. Abst., Vol.22, No.6, pp.429-442.  https://doi.org/10.1016/0148-9062(85)90007-5
  25. Rowe, P. W., Barden, I., and Lee, I. K. (1964), "Energy Components During the Triaxial Cell and Direct Shear Tests", Geotechnique, Vol.14, No.3, pp.247-261.  https://doi.org/10.1680/geot.1964.14.3.247
  26. Saeb, S. (1990), "A Variance on the Ladanyi and Archambault's Shear Strength Criterion", International symposium on rock joints, Barton & Stephansson (eds), Balkema, pp.701-705. 
  27. Son, M. (2020), "Shear Strength of Rock Joints and Its Estimation", KSCE J. Civ. Eng. Vol.24, pp.2931-2938.  https://doi.org/10.1007/s12205-020-0296-7
  28. Tse, R. and Cruden, D. M. (1979), "Estimating Joint Roughness Coefficients", Int. J. Rock Mech. Min. Sci. and Geomech, Abstr, Vol.16, pp.303-307.  https://doi.org/10.1016/0148-9062(79)90241-9
  29. Zhao, J. (1997a), "Joint Surface Matching and Shear Strength Part A - Joint Matching Coefficient (JMC)", Int. J. Rock Mech. Min. Sci., Vol.34, No.2, pp.173-178.  https://doi.org/10.1016/S0148-9062(96)00062-9
  30. Zhao, J. (1997b), "Joint Surface Matching and Shear Strength Part B - JRC-JMC Shear Strength Criterion", Int. J. Rock Mech. Min. Sci., Vol.34, No.2, pp.179-185. https://doi.org/10.1016/S0148-9062(96)00063-0