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Abstract. In this paper, we present a new construction for self-dual

codes that uses the concept of double bordered construction, group rings,
and reverse circulant matrices. Using groups of orders 2, 3, 4, and 5,

and by applying the construction over the binary field and the ring
F2 + uF2, we obtain extremal binary self-dual codes of various lengths:

12, 16, 20, 24, 32, 40, and 48. In particular, we show the significance of

this new construction by constructing the unique Extended Binary Golay
Code [24, 12, 8] and the unique Extended Quadratic Residue [48, 24, 12]

Type II linear block code. Moreover, we strengthen the existing relation-

ship between units and non-units with the self-dual codes presented in
[10] by limiting the conditions given in the corollary. Additionally, we

establish a relationship between idempotent and self-dual codes, which is

done for the first time in the literature.

1. Introduction

Many researchers are interested in constructing extremal binary self-dual
codes over Frobenius rings since these codes are linked to other mathematical
structures and have numerous applications. There is a substantial body of
literature devoted to the construction of the extended binary Golay code and
the extended quadratic residue code.

Type II codes are self-dual codes that are doubly-even [8, p. 339]. Each non-
zero codeword in a doubly-even code has a weight that is a multiple of four.
There is only one Type II code with a 48 length, a 24 dimension, and a 12 min-
imum distance up to equivalency, this was validated in 2003 by Houghten [7].
Type II codes are known as extremal self-dual codes as they attain the greatest
distance for their length. Extremal Type II codes have got the most attention
in the literature because of their strong relation to sphere packings. These
codes fulfill the formula [n, n

2 , 4⌊
n
24⌋+ 4], n = 8m (where m is a natural num-

ber) for [length, dimension, and distance] [8, p. 346]. The first putative code in
the Type II series of codes when n equals twenty-four is the extended binary
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Golay code. The second putative code in this series is the extended quadratic
residue code. In this paper, using a new construction, we have constructed
both codes.

Extremal self-dual codes of Type II with lengths divisible by 24 are of great
relevance because the codewords of weight w form a 5-design for every non-
zero weight w [1]. From these codes, the Extended Golay code is the [24, 12, 8]
code, while the Extended Quadratic Residue Code, or Extended QR, is the
[48, 24, 12] code.

In 1990, the code [24, 12, 8] was constructed using ideals in the group al-
gebra F2S4; see [2] for details. In 2008, the [24, 12, 8] code was constructed
from F2D24; see [13] for details. The most common approach to constructing
extended binary Golay and extended quadratic residue codes is to extend the
binary Golay code of length 23 by an even parity bit and the quadratic residue
code of length 47 by an even parity bit. In this paper, we have defined a new
way of constructing the extended binary Golay code and the extended qua-
dratic residue code. We construct the code here by blending the concept of
double bordered constructions of self-dual codes from group rings over Frobe-
nius rings [11] with constructing self-dual codes from group rings and reverse
circulant matrices [10].

The following is an outline of the work in this paper: In Section 2, we discuss
the preliminaries, which are necessary for comprehending the findings of this
research. In Section 3, we present the new constructions and the theoretical
results. Section 4 presents numerical results for the extended binary Golay
code, extended quadratic residue code, and extremal binary self-dual codes of
varying lengths obtained by directly applying our construction over a field F2

and ring F2 + uF2 with SAGE [16]. The paper wraps up with the conclusion
of our work and recommendations for future research.

2. Preliminaries

Throughout the paper, we will assume all rings are finite, commutative, and
Frobenius rings with a multiplicative identity.

2.1. Group rings and ring of matrices

We will use group rings in our construction, so essential group ring descrip-
tions are discussed. In group rings, the cardinality of ring and group can be
infinite, but in our construction of codes, we will consider both the ring and
the group of finite cardinality. Let G be a group of order n. Then the elements
of the group rings are of the form

∑n
i=1 αigi, αi ∈ R, gi ∈ G.

The addition of the two elements of the group rings is defined coordinate
wise, i.e.,

n∑
i=1

αigi +

n∑
i=1

βigi =

n∑
i=1

(αi + βi)gi.
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The product of the two elements of the group rings is defined by

(

n∑
i=1

αigi)(

n∑
j=1

βigi) =
∑
i,j

αiβjgigj .

T. Hurley was the first to introduce the relationship between group rings and
ring of matrices in [9]. Let R be a finite commutative Frobenius ring of char-
acteristic 2. Let G = {g1, g2, . . . , gn} denote a finite group of order n, and
ϑ = αg1g1 + αg2g2 + · · · + αgngn be an element of the group ring RG. Then
the matrix representation σ(ϑ) of ϑ is given by

σ(ϑ) =


αg−1

1 g1
αg−1

1 g2
· · · αg−1

1 gn

αg−1
2 g1

αg−1
2 g2

· · · αg−1
2 gn

...
...

...
...

αg−1
n g1

αg−1
n g2

· · · αg−1
n gn

 .

Let σ denote a bijective ring homomorphism between group rings RG and rings
of matrix M(RG,ϑ). We will now represent σ(ϑ) of an element ϑ ∈ RG, where
G = Cn. LetG = Cn = {z | zn = 1}, and ϑ = α0+α1z+α2z

2+· · ·+αn−1z
n−1 ∈

RCn. Then σ(ϑ) = circ
[
α0 α1 α2 · · · αn−1

]
.

For more details on the group ring, see [14].

2.2. Self-dual codes

To begin, we’ll go over the basic definitions of coding theory. We say the
code is linear if it is a submodule of Rn. The codewords of the code C are the
elements of C. The Euclidean inner product between two elements, says l =
{l1, l2, . . . , ln} and m = {m1,m2, . . . ,mn} of Rn, is given by ⟨l,m⟩E =

∑
limi.

The dual C⊥ of code C is defined as

C⊥ = {l ∈ Rn | ⟨l,m⟩E = 0 ∀m ∈ C}.

If C ⊆ C⊥, then the code C is said to be self orthogonal, and if C = C⊥, then
the code C is said to be self-dual. Throughout the paper, two types of binary
self-dual codes are built: one of Type I and another of Type II. The binary
self-dual code C is said to be of Type I if the weight of all its codewords is
divisible by two, and of Type II if the weight of all its codewords is divisible
by four.

Theorem 2.1 ([15]). Let dI(n) and dII(n) represent the minimum distance of
Type I and Type II codes of length n, respectively. Then,

dII(n) ≤ 4
⌊ n

24

⌋
+ 4

and

dI(n) ≤

{
4
⌊

n
24

⌋
+ 4 if n ̸≡ 22 (mod 24),

4
⌊

n
24

⌋
+ 6 if n ≡ 22 (mod 24).
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Self-dual codes that attain these bounds are known as extremal self-dual
codes. For a full description of self-dual codes over the Frobenius ring, see
[3, 4].

2.3. Ring F2 + uF2

The commutative Frobenius ring with characteristic 2 is denoted by Rk. For
k ≥ 1, the ring Rk is defined as

F2[u1, u2, . . . , uk]/⟨u2
1, u

2
2, . . . , u

2
k⟩

such that uiuj = ujui, 1 ≤ i ̸= j ≤ k. The ring Rk can be recursively expressed
as

Rk = Rk−1 + ukRk−1.

In this paper, we will do all the repetitions for generating self-dual codes over
the ring F2 + uF2. The ring F2 + uF2 or R1 is defined as a commutative
Frobenius ring of characterestic 2 with the 4 elements 0, 1, u, 1 + u and the
condition that u2 = 0. The ring F2 + uF2 is isomorphic to F2[X]/⟨X2⟩ and is
represented as

F2 + uF2 = {a+ bu | a, b ∈ F2, u
2 = 0}.

The Lee weights of the elements 0, 1, u, 1+ u of the ring F2 + uF2 are 0, 1, 2, 1,
respectively.

The Gray map ϕ is a map defined from (F2 + uF2)
n
to F 2n

2 in such a way
that ϕ(a + bu) = (b, a + b), where a, b ∈ F2. This is a distance-preserving
mapping, which means that the Lee distance dL of a code C(n, 2k, dL) over
(F2 + uF2)

n
equals the Hamming distance dH of a code ϕ(C)(2n, k, dH).

Theorem 2.2. The Gray image of a linear self-dual code C of length n over
F2 + uF2 is a binary linear self-dual code ϕ(C) of length 2n.

The natural projection Ω from F2 + uF2 to F2 is defined as follows:

Ω : F2 + F2 → F2, Ω(a+ bu) = a.

Let C be a linear code over F2+uF2 and B = Ω(C). Then B is a projection of
C into F2 and C is a lift of B into F2+uF2. The projection of a self-orthogonal
code is always a self-orthogonal, but the projection of a self-dual code need not
be self-dual. For more details on Rk, see [5].

3. Main matrix construction

Here we present our main construction. As mentioned before, we define a
double border around the matrix given in [10]. The motivation is to produce
extremal binary self-dual codes of various lengths, and the most important
codes are the extended Golay code, i.e., [24, 12, 8] and the Extended Quadratic
Residue Code, which we shall call Extended QR, the only known [48, 24, 12]
code, via our construction, that could not be obtained in [10] and [11]. Let
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ϑ1, ϑ2 ∈ RG, where R is a Frobenius ring of characteristic 2, and G is a group
of order n. The matrix is defined as follows:

(3.1) M(σ) =



β1 β2 β3 · · · β3 β4 · · · β4 β5 β6 β7 · · · β7 β8 · · · β8

β2 β1 β4 · · · β4 β3 · · · β3 β6 β5 β8 · · · β8 β7 · · · β7

β3 β4 β7 β8

...
... In 0

...
... σ(ϑ1) σ(ϑ2) + C

β3 β4 β7 β8

β4 β3 β8 β7

...
... 0 In

...
... σ(ϑ2)

T + C σ(ϑ1)
T

β4 β3 β8 β7


.

Let C(σ) be a code generated through the matrix M(σ). Then, code C(σ)
has length 4n+ 4.

Lemma 3.1. Let G = {g1, g2, . . . , gn} be a finite group of order n and R be a
finite commutative Frobenius ring, so that

N(σ) =

(
σ(ϑ1) σ(ϑ2) + C

σ(ϑ2)
T + C σ(ϑ1)

T

)
,

where ϑ1 and ϑ2 are the elements of RG, σ(ϑ1) and σ(ϑ2) are group-ring
matrices of n×n order and C is a reverse circulant matrix of n×n order over
R. Then,

σ(ϑk)

1
...
1

 = σ(ϑk)
T

1
...
1

 =

µk

...
µk

 (k = 1, 2),

where µ1 =
∑

g∈G αg, µ2 =
∑

g∈G βg.
Let η denote the sum of all elements of the first row of matrix C. Then,

(σ(ϑ2) + C)

1
...
1

 = (σ(ϑ2)
T + C)

1
...
1

 =

µ2 + η
...

µ2 + η

 .

Proof. Clearly, σ(ϑ1) = (αg−1
i gj

)i,j=1,...,n, σ(ϑ2) = (βg−1
i gj

)i,j=1,...,n, and C =

(γij)i,j=1,...,n.

Now, the i-th element of column σ(ϑ1)

(
1
...
1

)
is

n∑
j=1

αg−1
i gj

=
∑
g∈G

αg−1
i g =

∑
g∈G

αg = µ1, gi ∈ G, g−1
i ∈ G,

and the i-th element of column σ(ϑ1)
T

(
1
...
1

)
is

n∑
j=1

αg−1
j gi

=
∑
g∈G

αg−1gi =
∑
g∈G

αggi =
∑
g∈G

αg = µ1, gi ∈ G.
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Thus,

σ(ϑ1)

1
...
1

 = σ(ϑ1)
T

1
...
1

 =

µ1

...
µ1

 .

Similarly, the i-th element of column σ(ϑ2)

(
1
...
1

)
is

n∑
j=1

βg−1
i gj

=
∑
g∈G

βg−1
i g =

∑
g∈G

βg = µ2, gi ∈ G, g−1
i ∈ G,

and the i-th element of column σ(ϑ2)
T

(
1
...
1

)
is

n∑
j=1

βg−1
j gi

=
∑
g∈G

βg−1gi =
∑
g∈G

βggi =
∑
g∈G

βg = µ2, gi ∈ G.

Thus,

σ(ϑ2)

1
...
1

 = σ(ϑ2)
T

1
...
1

 =

µ2

...
µ2

 .

Furthermore, the i-th element of column C

(
1
...
1

)
is

n∑
j=1

γij = γi1 + γi2 + · · ·+ γin = η.

Thus,

C

1
...
1

 =

η
...
η

 .

Hence,

(σ(ϑ2) + C)

1
...
1

 = (σ(ϑ2)
T + C)

1
...
1

 =

µ2 + η
...

µ2 + η

 .

□

In 2020, [10, Theorem 2.5], Gildea, Kaya, and Yildiz introduced a matrix
and had shown that, under certain conditions, we can generate self-dual codes
of order 4n by a group of order n. In Theorem 3.2, we extend this result by
introducing double border around their matrix and demonstrating that, under
certain conditions, we can generate self-dual codes of order 4n+ 4 by a group
of order n. The concept of double bordered was introduced by Gildea in [11].



ALTERED GROUP RING CONSTRUCTION OF TYPE II LINEAR BLOCK CODE 835

Their main matrix construction does not involve the concept of reverse circulant
matrix. In our main matrix construction we have used reverse circulant matrix.
Moreover, their main theorem, i.e., [11, Theorem 3.2], was restricted for the
group of order 2p (p is odd prime) only but, by Theorem 3.2, we have extended
it to any group of order n (n ∈ N). As a result we are able to construct those
extremal self-dual codes which can not be attained by the technique used in
[11], i.e., extremal self-dual codes of length 12, 20, 40 are constructed as shown
in Table 1, Table 5 and Table 6, respectively. By blending both the concepts of
[10] and in [11] Theorem 3.2, we are able to construct those extremal self-dual
codes which have not been obtained in [10] and [11]. In particular, we are able
to construct the well-known Extended Binary Golay Code, as shown in (Table
7, Code E2), the Extended QR code, as shown in (Table 8, Code L2), and
various other extremal self-dual codes which are listed in Section 4.

Theorem 3.2. Let R be a finite commutative Frobenius ring with characteristic
2, G be a finite group of order n, and Cσ be a code generated by the matrix Mσ

such that |C(σ)| = |R|n2 . Then C(σ) is a self-dual code of length 4n+ 4 if the
following conditions are satisfied
Case I: n is odd

(1)
∑8

i=0 βi = 0,
(2) σ(ϑ1ϑ2 + ϑ2ϑ1) + σ(ϑ1)C + Cσ(ϑ1) = 0,
(3) σ(ϑ1ϑ

∗
1 + ϑ2ϑ

∗
2) + σ(ϑ2)C + Cσ(ϑ2)

T + C2

= In + (β2
3 + β2

4 + β2
7 + β2

8)

 1 · · · 1
...

. . .
...

1 · · · 1


n×n

,

(4) σ(ϑ∗
1ϑ

∗
2 + ϑ∗

2ϑ
∗
1) + Cσ(ϑ1)

T + σ(ϑ1)
TC = 0,

(5) σ(ϑ∗
1ϑ1 + ϑ∗

2ϑ2) + σ(ϑ2)
TC + Cσ(ϑ2) + C2

= In + (β2
3 + β2

4 + β2
7 + β2

8)

 1 · · · 1
...

. . .
...

1 · · · 1


n×n

,

(6) β3(β1 + 1) + β4β2 + β7(β5 + µ1) + β6β8 + (µ2 + η)β8 = 0, and
(7) β4(β1 + 1) + β3β2 + β8(β5 + µ1) + β6β7 + (µ2 + η)β7 = 0.

Case II: n is even

(1) β2
1 + β2

2 + β2
5 + β2

6 = 0,
(2) Conditions 2 to 9 for this case is same as for the case ‘n is odd’.

Proof. Let

M(σ) =

[
M1 M2 M3 M4

MT
2 I2n MT

4 N(σ)

]
,

where M1 = circ(β1, β2), M2 = CIRC(A1, A2), M3 = circ(β5, β6), M4 =
CIRC(A3, A4), A1 = (β3, . . . , β3) ∈ Rn, A2 = (β4, . . . , β4) ∈ Rn, A3 =

(β7, . . . , β7) ∈ Rn, A4 = (β8, . . . , β8) ∈ Rn, and N(σ) =
[

σ(ϑ1) σ(ϑ2)+C

σ(ϑ2)
T+C σ(ϑ1)

T

]
.
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Then

M(σ)M(σ)T

=

[
M1M

T
1 +M2M

T
2 +M3M

T
3 +M4M

T
4 M1M2 +M2 +M3M4 +M4N(σ)T

MT
2 MT

1 +MT
2 +MT

4 MT
3 +N(σ)MT

4 MT
2 M2 + I2n +MT

4 M4 +N(σ)N(σ)T

]
.

Now,

M1M
T
1 +M2M

T
2 +M3M

T
3 +M4M

T
4 =circ(

2∑
i=1

(β2
i +nβ2

i+2 + β2
i+4 +nβ2

i+6), 0).

Case I: n is odd

M1M
T
1 +M2M

T
2 +M3M

T
3 +M4M

T
4 = circ(

2∑
i=1

(β2
i + β2

i+2 + β2
i+4 + β2

i+6), 0)

= circ(

8∑
i=1

β2
i , 0).

Case II: n is even

M1M
T
1 +M2M

T
2 +M3M

T
3 +M4M

T
4 = circ(

2∑
i=1

(β2
i + β2

i+4), 0)

= circ(β2
1 + β2

2 + β2
5 + β2

6 , 0)

and

MT
2 M2 + I2n +MT

4 M4 +N(σ)N(σ)T

=

2∑
i=1

β2
i+2 + β2

i+6CIRC(A,0) + I2n +N(σ)N(σ)T ,

where A = circ(1, . . . , 1︸ ︷︷ ︸
n-times

), 0 = circ(0, . . . , 0︸ ︷︷ ︸
n-times

) and

N(σ)N(σ)T

=
[
σ(ϑ1ϑ

∗
1 + ϑ2ϑ

∗
2) + σ(ϑ2)C + Cσ(ϑ2)

T + C2 σ(ϑ1ϑ2) + σ(ϑ1)C + σ(ϑ2ϑ1) + Cσ(ϑ1)
σ(ϑ∗

1ϑ
∗
2) + Cσ(ϑ1)

T + σ(ϑ∗
2ϑ

∗
1) + σ(ϑ1)

TC σ(ϑ∗
2ϑ2) + σ(ϑ2)

TC + Cσ(ϑ2) + C2 + σ(ϑ∗
1ϑ1)

]
.

It follows from Lemma 3.1 that

N(σ)MT
4 =



µ1β7 + µ2β8 + ηβ8 µ1β8 + µ2β7 + ηβ7

...
...

µ1β7 + µ2β8 + ηβ8 µ1β8 + µ2β7 + ηβ7

µ2β7 + ηβ7 + µ1β8 µ2β8 + ηβ8 + µ1β7

...
...

µ2β7 + ηβ7 + µ1β8 µ2β8 + ηβ8 + µ1β7


.

Additionally,

MT
2 MT

1 +MT
2 +MT

4 MT
3 +N(σ)MT

4
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=


β3β1+β4β2+β3+β7β5+β6β8+µ1β7+µ2β8+ηβ8 β4β1+β3β2+β4+β8β5+β6β7+µ1β8+µ2β7+ηβ7

...
...

β3β1+β4β2+β3+β7β5+β6β8+µ1β7+µ2β8+ηβ8 β4β1+β3β2+β4+β8β5+β6β7+µ1β8+µ2β7+ηβ7

β4β1+β3β2+β4+β8β5+β6β7+µ2β7+ηβ7+µ1β8 β4β2+β3β1+β3+β5β7+β6β8+µ2β8+ηβ8+µ1β7

...
...

β4β1+β3β2+β4+β8β5+β6β7+µ2β7+ηβ7+µ1β8 β4β2+β3β1+β3+β5β7+β6β8+µ2β8+ηβ8+µ1β7

.
Clearly, M(σ)M(σ)T is a symmetric matrix and Cσ is self orthogonal if for∑8

i=0 βi = 0,

σ(ϑ1ϑ2 + ϑ2ϑ1) + σ(ϑ1)C + Cσ(ϑ1) = 0,

σ(ϑ1ϑ
∗
1 + ϑ2ϑ

∗
2) + σ(ϑ2)C + Cσ(ϑ2)

T + C2

= In + (β2
3 + β2

4 + β2
7 + β2

8)

 1 · · · 1
...

. . .
...

1 · · · 1


n×n

,

σ(ϑ∗
1ϑ

∗
2 + ϑ∗

2ϑ
∗
1) + Cσ(ϑ1)

T + σ(ϑ1)
TC = 0,

σ(ϑ∗
1ϑ1 + ϑ∗

2ϑ2) + σ(ϑ2)
TC + Cσ(ϑ2) + C2

= In + (β2
3 + β2

4 + β2
7 + β2

8)

 1 · · · 1
...

. . .
...

1 · · · 1


n×n

,

β3(β1 + 1) + β4β2 + β7(β5 + µ1) + β6β8 + (µ2 + η)β8 = 0,

β4(β1 + 1) + β3β2 + β8(β5 + µ1) + β6β7 + (µ2 + η)β7 = 0.

Because |C(σ)| = |R|n2 and C(σ) is self-orthogonal under the conditions estab-
lished above, we can conclude that the code C(σ) is a self-dual code if all of
the preceding conditions are met. □

In 2020, [10, Corollary 3.2, Corollary 3.3 and Corollary 3.4], Gildea, Kaya,
and Korban under certain conditions defined a relationship of units, non-units,
and unitary units with self-dual codes, respectively. In Corollaries 3.3, 3.4, 3.5
and 3.6 we have relaxed both the restrictions, i.e., C commutes with σ(ϑ1) and
ϑ1 commutes with ϑ2. In addition, we have replaced the condition that both
Cσ(ϑ2)

T and Cσ(ϑ2) must be symmetric with the simple condition that σ(ϑ2)
is symmetric, which strenghtens the relationship between units, non-units and
unitary units with the self-dual codes.

Corollary 3.3. Let C(σ) be a self-dual code, G be a finite group of order n,
and R be a finite commutative Frobenius ring of characteristic 2. Then the
elements ϑ1ϑ

∗
1 + ϑ2ϑ

∗
2, ϑ

∗
1ϑ1 + ϑ∗

2ϑ2 ∈ RG are units if the following conditions
are satisfied:

(1) β2
3 + β2

4 + β2
7 + β2

8 = 0,
(2) σ(ϑ2) is symmetric, and
(3) C2 = 0.



838 S. GUPTA AND D. UDAR

Proof. If σ(ϑ2) is symmetric, then σ(ϑ2)C + Cσ(ϑ2)
T = 0. If C2 = 0, and

β2
3 + β2

4 + β2
7 + β2

8 = 0, then σ(ϑ1ϑ
∗
1 + ϑ2ϑ

∗
2) = σ(ϑ∗

1ϑ1 + ϑ∗
2ϑ2) = In. Then,

det(ϑ1ϑ
∗
1+ϑ2ϑ

∗
2) = det(ϑ∗

1ϑ1+ϑ∗
2ϑ2) = 1. Hence, ϑ1ϑ

∗
1+ϑ2ϑ

∗
2 and ϑ∗

1ϑ1+ϑ∗
2ϑ2

are unitary units. □

Corollary 3.4. Let C(σ) be a self-dual code, G be a finite group of order n
(odd), and R be a finite commutative Frobenius ring of characteristic 2. Then
the elements ϑ1ϑ

∗
1 + ϑ2ϑ

∗
2, ϑ

∗
1ϑ1 + ϑ∗

2ϑ2 ∈ RG are non units if the following
conditions are satisfied:

(1) β2
3 + β2

4 + β2
7 + β2

8 = 1,
(2) σ(ϑ2)is symmetric, and
(3) C2 = 0.

Proof. If σ(ϑ2) is symmetric, then σ(ϑ2)C + Cσ(ϑ2)
T = 0. If C2 = 0, and

β2
3 + β2

4 + β2
7 + β2

8 = 1, then

σ(ϑ1ϑ
∗
1 + ϑ2ϑ

∗
2) = In +


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1


n×n

=


0 1 · · · 1
1 0 · · · 1
...

...
. . .

...
1 1 · · · 0


n×n

.

Then,

det(σ(ϑ1ϑ
∗
1 + ϑ2ϑ

∗
2)) = det


0 1 · · · 1
1 0 · · · 1
...

...
. . .

...
1 1 · · · 0


n×n

= (n− 1) det


1 1 · · · 1
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


n×n

= 0 (if n is odd).

Hence, det(σ(ϑ1ϑ
∗
1 + ϑ2ϑ

∗
2)) = 0 and ϑ1ϑ

∗
1 + ϑ2ϑ

∗
2 is a non-unit by Corollary 3

of [9]. Similarly, det(σ(ϑ∗
1ϑ1 + ϑ∗

2ϑ2)) = 0 and ϑ∗
1ϑ1 + ϑ∗

2ϑ2 is a non-unit. □

Corollary 3.5. Let C(σ) be a self-dual code, G be a finite group of order n
(odd), and R be a finite commutative Frobenius ring of characteristic 2. Then
the elements ϑ1ϑ

∗
1 + ϑ2ϑ

∗
2, ϑ

∗
1ϑ1 + ϑ∗

2ϑ2 ∈ RG are non units if the following
conditions are satisfied:

(1) β2
3 + β2

4 + β2
7 + β2

8 = 0,
(2) σ(ϑ2) is symmetric, and
(3) C2 = I.
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Proof. If σ(ϑ2) is symmetric, then σ(ϑ2)C + Cσ(ϑ2)
T = 0. If C2 = I, and

β2
3 + β2

4 + β2
7 + β2

8 = 0, then σ(ϑ1ϑ
∗
1 + ϑ2ϑ

∗
2) = σ(ϑ1ϑ

∗
1 + ϑ2ϑ

∗
2) = 0 Hence,

ϑ1ϑ
∗
1 + ϑ2ϑ

∗
2 and ϑ∗

1ϑ1 + ϑ∗
2ϑ2 are non-units. □

Corollary 3.6. Let C(σ) be a self-dual code, G be a finite group of order n
(odd), and R be a finite commutative Frobenius ring of characteristic 2. Then
the element ϑ2 ∈ RG is unitary unit if following conditions are satisfied:

(1) σ(ϑ2) is symmetric,
(2) β2

3 + β2
4 + β2

7 + β2
8 = 0,

(3) C2 = I, and
(4) ϑ1 is unitary in RG.

Proof. If σ(ϑ2) is symmetric, then σ(ϑ2)C + Cσ(ϑ2)
T = 0. If C2 = I, β2

3 +
β2
4 +β2

7 +β2
8 = 0, and ϑ1 is unitary in RG, then σ(1+ϑ2ϑ

∗
2) = σ(1+ϑ∗

2ϑ2) = 0
Thus, ϑ2ϑ

∗
2 = ϑ∗

2ϑ2 = 1, and ϑ2 is unitary unit. □

By Corollary 3.7, we have established a relationship between idempotents
and self-dual codes, which have been established for the first time in the liter-
ature.

Corollary 3.7. Let C(σ) be a self-dual code, G be a finite group of order n
(odd), and R be a finite commutative Frobenius ring of characteristic 2. Then
the elements ϑ1ϑ

∗
1 + ϑ2ϑ

∗
2, ϑ∗

1ϑ1 + ϑ∗
2ϑ2 ∈ RG are idempotents if following

conditions are satisfied:

(1) β2
3 + β2

4 + β2
7 + β2

8 = 1,
(2) σ(ϑ2) is symmetric, and
(3) C2 = 0.

Proof. If σ(ϑ2) is symmetric, then σ(ϑ2)C + Cσ(ϑ2)
T = 0.

If n is odd, then 1 · · · 1
...

. . .
...

1 · · · 1


2

n×n

=

 1 · · · 1
...

. . .
...

1 · · · 1


n×n

.

That is,

 1 · · · 1
...

. . .
...

1 · · · 1


n×n

is an idempotent matrix.

If C2 = 0, and β2
3 + β2

4 + β2
7 + β2

8 = 1, then

σ(ϑ1ϑ
∗
1 + ϑ2ϑ

∗
2) = In +

 1 · · · 1
...

. . .
...

1 · · · 1


n×n

= In −

 1 · · · 1
...

. . .
...

1 · · · 1


n×n

.

If E is an idempotent matrix, then I −E is also an idempotent matrix. Thus,
σ(ϑ1ϑ

∗
1 + ϑ2ϑ

∗
2) is an idempotent matrix and ϑ1ϑ

∗
1 + ϑ2ϑ

∗
2 is an idempotent
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element of RG. Similarly, we can say that ϑ∗
1ϑ1 + ϑ∗

2ϑ2 is an idempotent
element of RG. □

4. Computational results

In this section, we apply our main construction over the field F2 and the ring
F2+uF2 to search for extremal binary self-dual codes of lengths of 12, 16, 20, 24,
32, 40, 48. We consider groups of orders 2, 3, 4 and 5, in particular C2, C3, C4

and C5. We also employ the Gray map to construct the famous Extended QR
code. For all our computational calculation, we have used the SAGE software
[16].
Algorithm:
INPUT: Field F2.
OUTPUT: Extemal Self-dual Codes.

1. Generate matrices σ(ϑ) of order n× n by a group of order n, over the
field F2. The structure of the matrix σ(ϑ) is described in Section 2.1.

2. Generate reverse circulant matrices C of order n× n over the field F2.
3. Generate boundary matrices M1, M2, M3 and M4 over the Field F2,

where M1 = circ(β1, β2), M2 = CIRC(A1, A2), M3 = circ(β5, β6),
M4 = CIRC(A3, A4), A1 = (β3, . . . , β3) ∈ Rn, A2 = (β4, . . . , β4) ∈
Rn, A3 = (β7, . . . , β7) ∈ Rn, A4 = (β8, . . . , β8) ∈ Rn.

4. Construct the set of generator matricesM(σ) of order (2n+2)×(4n+4)
having the structure mentioned in Equation (3.1) using all the possible
combinations of matrices obtained in Step 1, Step 2 and Step 3.

5. From the given set of generator matrices, collect matrices that satisfy
the condition M(σ)M(σ)T = 0 and have rank 2n+ 2. These matrices
generate self-dual codes C(σ) with parameters (4n + 4, 2n + 2, dmin),
where dmin is the minimum distance of the code.

6. Evaluate dmin = min{d(a, b) | a ̸= b} for the self-dual codes that are
generated from matrices collected in Step 5. Here, d(a, b) = |{i | 1 ≤
i ≤ 4n + 4, ai ̸= bi}|, where a, b ∈ F 4n+4

2 are the codewords of length
4n+ 4 for the code C(σ).

7. Shortlist matrices from Step 5, whose dmin of its corresponding self-
dual code matches the minimum distance of extremal self-dual codes
of length 4n + 4. Refer to Theorem 2.1 for the minimum distance of
extremal self-dual codes. In this step, we obtain matrices which can
generate the extremal self-dual codes C(σ) of length 4n+ 4.

8. Classify self-dual codes constructed from the matrices obtained in Step
7 are of Type I or Type II. The binary self-dual code C(σ) is said to be
of Type I and Type II if the weight of all of its codewords is divisible
by two and four respectively. The weight of a codeword a is defined as
w(a) = d(a, 0), where 0 = (0, 0, . . . , 0) is the zero vector.

9. Lift the obtained self-dual codes in Step 8, to the ring F2 + uF2, as
discussed in Section 2.3. Generate a set of all possible lifted matrices
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by mapping an element 0 of F2 to two elements 0 and u of the ring
F2+uF2 and element 1 of F2 is mapped to elements 1 and 1+u of the
ring F2 + uF2.

10. From the given set of uplifted matrices, collect matrices that can gen-
erate self-dual codes of length 4n+ 4, as done in Step 5.

11. Evaluate dL for the self-dual codes which are generated from matrices
collected in Step 10. Here dL denotes the smallest positive Lee distance
of a code. The Lee weight of the ring F2 + uF2 elements 0, 1, u and
1 + u are 0, 1, 2 and 1, respectively. The Lee distance between 4n + 4
tuple is defined as the sum of Lee weights of the difference between the
components of these tuples.

12. Shortlist matrices whose dL of its corresponding self-dual code matches
the minimum distance of extremal self-dual codes of length 2(4n+ 4).
In this step, we obtain matrices which can generate the self-dual codes
over the ring F2 + uF2 of length 4n + 4, whose binary images are
extremal self-dual codes of length 2(4n+ 4).

13. Classify self-dual codes constructed from the matrices obtained in Step
12 are of Type I or Type II.

4.1. Construction from cyclic group of order 2

Here we execute the above construction for G = C2 over the field F2 and
obtain an extremal self-dual code of length 12. Now, we lift the code A1 over

Table 1. Self-dual codes of length 12 from C2 over F2.

Code(Ai) (β1, β2, β3, β4, β5, β6, β7, β8) f(σ(ϑ1)) f(σ(ϑ2)) fC |Aut(Ai)| Type

1 (1, 0, 1, 1, 1, 0, 0, 0) (0, 0) (0, 0) (1, 0) 23040 [12, 6, 4]I

the Frobenious ring F2+uF2 to obtain an extremal self-dual code of length 12,
whose binary image is the Type II extremal self-dual code of length 24.

Table 2. The extremal binary self-dual codes of length 24
obtained from F2 + uF2 lift of A1.

CodeIi (β1, β2, β3, β4, β5, β6, β7, β8) f(σ(ϑ1)) f(σ(ϑ2)) fC Type

1 A1 (1, u, 1, 1, 1, 0, 0, u) (0, u) (0, 0) (1, 0) TypeII

4.2. Construction from cyclic group of order 3

Here we execute the above construction for G = C3 over the field F2 and
obtain an extremal self-dual code of length 16.

Now, we lift the codes B1, B2, and B3 over the Frobenious ring F2 + uF2 to
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Table 3. Self-dual codes of length 16 from C3 over F2.

Code(Bi) (β1, β2, β3, β4, β5, β6, β7, β8) f(σ(ϑ1)) f(σ(ϑ2)) fC |Aut(Bi)| Type

1 (1, 0, 1, 1, 1, 0, 0, 0) (0, 0, 0) (0, 0, 0) (1, 0, 0) 5160960 [16, 8, 4]II
2 (1, 0, 0, 0, 0, 0, 0, 1) (0, 0, 0) (0, 0, 0) (1, 1, 0) 3612672 [16, 8, 4]II
3 (1, 0, 1, 1, 0, 0, 0, 1) (0, 0, 0) (0, 0, 0) (1, 1, 0) 73728 [16, 8, 4]I

obtain an extremal self-dual code of length 16, whose binary image is the Type
II extremal self-dual code of length 32.

Table 4. The extremal binary self-dual codes of length 32
obtained from F2 + uF2 lift of B1, B2 and B3.

CodeJi (β1, β2, β3, β4, β5, β6, β7, β8) f(σ(ϑ1)) f(σ(ϑ2)) fC Type

1 B1 (1, u, 1, 1, 1, 0, 0, u) (u, 0, 0) (0, 0, 0) (1, 0, 0) TypeII
2 B1 (u+ 1, 0, 1, u+ 1, u+ 1, u, 0, u) (u, 0, 0) (u, u, u) (u+ 1, u, u) TypeII
3 B2 (1, 0, 0, 0, 0, 0, 0, 1) (0, u, u) (0, 0, 0) (1, 1, 0) TypeII
4 B2 (u+ 1, 0, 0, u, u, 0, 0, 1) (u, 0, 0) (u, u, u) (u+ 1, u+ 1, u) TypeII
5 B3 (1, 0, 1, 1, 0, 0, u, 1) (0, u, u) (0, 0, 0) (1, 1, 0) TypeII
6 B3 (u+ 1, 0, 1, u+ 1, 0, u, 0, 1) (u, 0, 0) (u, u, u) (u+ 1, u+ 1, u) TypeII

4.3. Construction from cyclic group of order 4

Here we execute the above construction for G = C4 over the field F2 and
obtain an extremal self-dual code of length 20.

Table 5. Self-dual codes of length 20 from C4 over F2.

Code(Di) (β1, β2, β3, β4, β5, β6, β7, β8) f(σ(ϑ1)) f(σ(ϑ2)) fC |Aut(Di)| Type

1 (1, 0, 1, 1, 1, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (1, 0, 0, 0) 1857945600 [20, 10, 4]I
2 (1, 0, 1, 1, 1, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (1, 1, 1, 0) 294912 [20, 10, 4]I
3 (1, 0, 1, 1, 1, 0, 0, 0) (1, 0, 0, 0) (1, 0, 0, 0) (1, 0, 0, 0) 4423680 [20, 10, 4]I
4 (1, 0, 1, 1, 1, 0, 0, 0) (1, 0, 0, 0) (1, 0, 0, 0) (1, 1, 0, 1) 122880 [20, 10, 4]I

Now, we lift the codes D1, D2, D3, and D4 over the Frobenious ring F2 + uF2

to obtain extremal self-dual code of length 20, whose binary image is the Type
II extremal self-dual code of length 40.

Table 6. The extremal binary self-dual codes of length 40
obtained from F2 + uF2 lift of D1, D2, D3 and D4.

Code(Ki) (β1, β2, β3, β4, β5, β6, β7, β8) f(σ(ϑ1)) f(σ(ϑ2)) fC Type

1 D1 (1, u, 1, 1, 1, 0, 0, u) (0, 0, u, 0) (0, 0, 0, 0) (1, 0, 0, 0) TypeII
2 D1 (1, u, 1, 1, u+ 1, 0, 0, u) (u, u, 0, u) (u, u, u, u) (1, 0, u, 0) TypeII
3 D2 (1, u, 1, 1, 1, 0, 0, u) (0, 0, u, 0) (0, 0, 0, 0) (1, 1, 1, u) TypeII
4 D2 (u+ 1, 0, u+ 1, u+ 1, u+ 1, u, u, 0) (u, u, 0, u) (u, u, u, u) (u+ 1, u+ 1, u+ 1, 0) TypeII
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4.4. Construction from cyclic group of order 5

Here we execute the above construction for G = C5 over the field F2 and
obtain an extremal self-dual code of length 24 of Type I and well known Ex-
tended Binary Golay Code.

Table 7. Self-dual codes of length 24 from C5 over F2.

Code(Ei) (β1, β2, β3, β4, β5, β6, β7, β8) f(σ(ϑ1)) f(σ(ϑ2)) fC |Aut(Ei)| Type

1 (1, 0, 0, 0, 0, 0, 0, 1) (0, 0, 1, 1, 0) (0, 0, 0, 0, 0) (1, 0, 1, 0, 0) 138240 [24, 12, 6]I
2 (1, 0, 1, 1, 0, 0, 0, 1) (0, 0, 1, 1, 0) (0, 0, 0, 0, 0) (1, 0, 1, 0, 0) 244823040 [24, 12, 8]II

Now, we lift the codes E2 over the Frobenious ring F2+uF2 to obtain extremal
self-dual code of length 24, whose binary image is the well known Extended
QR code.

Table 8. The extremal binary self-dual codes of length 48
obtained from F2 + uF2 lift of E2.

Code(Li) (β1, β2, β3, β4, β5, β6, β7, β8) f(σ(ϑ1)) f(σ(ϑ2)) fC Type

1 E2 (1, 0, 1, 1, 0, 0, 0, 1) (0, u, 1, 1, u) (0, 0, 0, u, u) (1, 0, 1, 0, 0) [48, 24, 10]I
2 E2 (u+ 1, 0, u+ 1, u+ 1, 0, u, u, u+ 1) (u, 0, u+ 1, u+ 1, 0) (u, u, u, u, u) (u+ 1, u, u+ 1, 0, 0) [48, 24, 12]II

5. Conclusion

We presented a new method for creating self-dual codes using group rings.
By doing so, we were able to show the relevance of this new construct by
constructing extremal binary self-double codes of various lengths: 12, 16, 20, 24
(Extended binary golay code), 32, 40, and most importantly, we have completed
the exhaustive search for [48, 24, 12] self-dual doubly-even codes begun in [6],
[7], [12]. We established a link between unitary units/units/non-units and
particularly idempotents with self-dual codes. Due to the computing limits
imposed by the construction approach, we were able to consider the groups of
orders 2, 3, 4, and 5. These computational techniques can be applied to several
families of rings and several groups within this framework.
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