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A NEW q-ANALOGUE OF VAN HAMME’S (G.2)

SUPERCONGRUENCE FOR PRIMES p ≡ 3 (mod 4)

Victor J. W. Guo and Xiuguo Lian

Abstract. Van Hamme’s (G.2) supercongruence modulo p4 for primes

p ≡ 3 (mod 4) and p > 3 was first established by Swisher. A q-analogue
of this supercognruence was implicitly given by the first author and

Schlosser. In this paper, we present a new q-analogue of Van Hamme’s

(G.2) supercongruence for p ≡ 3 (mod 4).

1. Introduction

In his first letter to Hardy in 1913, Ramanujan asserted that (see [2, p. 25,
eq. (2)]):
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without proof. Here (a)n = a(a+ 1) · · · (a+ n− 1) is the Pochhammer symbol
and Γ(x) is the Gamma function. The formula (1) was later proved by Hardy
[10]. In 1997, Van Hamme [9] listed thirteen p-adic analogues of Ramanujan-
type series, such as: for p ≡ 1 (mod 4),
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(tagged (G.2) in Van Hamme’s list). Here and in what follows, p is an odd
prime and Γp(x) denotes the p-adic Gamma function [19]. Swisher [20] and He
[11] proved that (2) is true modulo the higher power p4. Swisher [20, (3)] also
proved the following generalization of Van Hamme’s (G.2) supercongruence:
for p ≡ 3 (mod 4) and p > 3,
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(The factor (−1) was neglected by Swisher in her original supercongruence.)
In the past few years, q-analogues of Van Hamme’s supercongruences have

been widely studied. For example, the first author and Schlosser [5, Corollary
1.2 with d = 4] gave the following q-analogue of (3): for n ≡ 3 (mod 4),

(4)

M∑
k=0

[8k + 1]
(q; q4)4k
(q4; q4)4k

q2k

≡
(q2; q4)(3n−1)/4

(q4; q4)(3n−1)/4
[3n]q(1−3n)/4 (mod [n]Φn(q)

3),

where M = (3n − 1)/4 or n − 1. Here, the q-shifted factorial is defined by
(a; q)0 = 1 and (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1) for n = 1, 2, . . . .
For convenience, we also adopt the abbreviated notation (a1, a2, . . . , am; q)n =
(a1; q)n(a2; q)n · · · (am; q)n. Moreover, the q-integer is defined as [n] = [n]q =
(1− qn)/(1− q), and Φn(q) denotes the n-th cyclotomic polynomial, i.e.,

Φn(q) =
∏

1≤k≤n
gcd(k,n)=1

(q − ζk),

where ζ is an n-th primitive root of unity.
Liu andWang [15] showed that Van Hamme’s original (G.2) supercongruence

can be deduced from the following q-supercongruence: for n ≡ 1 (mod 4),
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2),(5)

where M = (n−1)/4 or n−1. Very recently, Liu and Wang [17] gave a general-
ization of (5) modulo [n]Φn(q)

3. For another generalization of (5), see [5, The-
orem 4.3]. Liu and Wang [15] also established the following q-supercongruence:
for n ≡ 1 (mod 4),

(6)
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2)2),

where M = (n− 1)/4 or n− 1.
It is easy to see that the n = p and q → −1 case of (6) reduces to (2).

Moreover, letting n = p and q → 1 in (6), Liu and Wang obtained the following
new supercongruence: for p ≡ 1 (mod 4),
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In this paper, we shall establish the following new q-analogue of (3).
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Theorem 1.1. Let n ≡ 3 (mod 4) be a positive integer. Then

(7)

M∑
k=0

[8k + 1]q2 [8k + 1]2
(q2; q8)4k
(q8; q8)4k

q−4k

≡ −
2(q4; q8)(3n−1)/4
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2)3),

where M = (3n− 1)/4 or n− 1.

For some other recent work on q-supercongruenes, see [1,6–8,12–14,16,21,22].
To see that the q-supercongruences (4) and (7) are indeed q-analogues of

(3), we need to prove the following result.

Proposition 1.2. Let p ≡ 3 (mod 4) and p > 3. Then
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It is easy to see that the n = p and q → −1 case of (7) reduces to (3).
Meanwhile, taking n = p and q → 1 in (7), we get the following new result: for
p ≡ 3 (mod 4) and p > 3,
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We shall prove Theorem 1.1 in the next section employing the method of
‘creative microscoping’, introduced by the first author and Zudilin [7]. A simple
proof of Proposition 1.2 using properties of the p-adic Gamma function will be
given in Section 3.

2. Proof of Theorem 1.1

We will make use of Watson’s 8ϕ7 transformation formula (see [3, Appendix
(III.18)]):

(9)
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a
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]
,

where the basic hypergeometric series r+1ϕr is defined as

r+1ϕr

[
a1, a2, . . . , ar+1
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; q, z

]
=

∞∑
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(q, b1, . . . , br; q)k

zk.

We shall also utilize the following easily proved q-congruence due to the first
author and Schlosser [4, Lemma 3].
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Lemma 2.1. Let d, m and n be positive integers with m ≤ n−1 and dm ≡ −1
(mod n). Then, for 0 ≤ k ≤ m, we have

(aq; qd)m−k

(qd/a; qd)m−k
≡ (−a)m−2k (aq; qd)k

(qd/a; qd)k
qm(dm−d+2)/2+(d−1)k (mod Φn(q)).

We first present the following q-congruence with two parameters a and b.

Theorem 2.2. Let n ≡ 3 (mod 4) be a positive integer, and let a, b be inde-
terminates. Then, modulo Φn(q

2)(1− aq6n)(a− q6n),

(10)
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.
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.

By Watson’s 8ϕ7 transformation formula (9), the right-hand side of (11) can
be written as

(12)
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4ϕ3

[
q−8, q2/b, q2+2n, q2−2n

q, q, q4/b
; q8, q8

]
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)
.

This means that (10) holds modulo 1− aq6n and a− q6n.
Moreover, setting q 7→ q2, d = 4, and m = (3n − 1)/4 in Lemma 2.1, for

0 ≤ k ≤ m, we have

(aq2; q8)m−k

(q8/a; q8)m−k
≡ (−a)m−2k (aq2; q8)k

(q8/a; q8)k
q2m(2m−1)+6k (mod Φn(q

2)).

Using this q-congruence, we can easily verify that the k-th and ((3n−1)/4−k)-
th summands on the left-hand side of (10) modulo Φn(q

2) cancel each other
for 0 ≤ k ≤ (3n−1)/4. This proves that the left-hand side of (10) is congruent
to 0 modulo Φn(q

2), and so (10) is true modulo Φn(q
2).
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The proof then follows from the fact that 1− aq6n, a− q6n, and Φn(q
2) are

pairwise coprime polynomials in q. □

We also need a simpler q-congruence as follows.

Theorem 2.3. Let n ≡ 3 (mod 4) be a positive integer, and let a, b be inde-
terminates. Then, modulo b− q6n,

(13)

(3n−1)/4∑
k=0
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(
b
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)k
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(
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)
.

Proof. For b = q6n, the left-hand side of (13) is equal to
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[
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]
.

In view of Watson’s transformation (9), we can write the right-hand side of
(14) as

(15)

(q10, q6; q8)(3n−1)/4

(aq8, q8/a; q8)(3n−1)/4
4ϕ3

[
q−8, aq2, q2/a, q2−6n

q, q, q4−6n ; q8, q8
]

=
[3n]q2(q

2, q6; q8)(3n−1)/4
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(
1− (1− aq2)(1− q2/a)(1− q2−6n)

(1− q)2(1− q4−6n)

)
.

This proves that the congruence (13) is true modulo b− q6n. □

We are now able to establish the following parametric generalization of The-
orem 1.1.

Theorem 2.4. Let n ≡ 3 (mod 4) be a positive integer, and let a be an inde-
terminate. Then, modulo Φn(q

2)2(1− aq6n)(a− q6n),

(16)

(3n−1)/4∑
k=0

[8k + 1]q2 [8k + 1]2
(aq2, q2/a, q2, q2; q8)k
(aq8, q8/a, q8, q8; q8)k
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≡ q(1−3n)/2[3n]q2
(q4; q8)(3n−1)/4

(q8; q8)(3n−1)/4

(
1− (1− aq2)(1− q2/a)

(1− q)2(1 + q2)

)
.

Proof. It is obvious that Φn(q
2)(1 − aq6n)(a − q6n) and b − q6n are relatively

prime polynomials. Employing the Chinese reminder theorem for coprime poly-
nomials, we can determine the remainder of the left-hand side of (10) modulo
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Φn(q
2)(1− aq6n)(a− q6n)(b− q6n) from (10) and (13):

(17)

(3n−1)/4∑
k=0

[8k + 1]q2 [8k + 1]2
(aq2, q2/a, q2/b, q2; q8)k
(aq8, q8/a, bq8, q8; q8)k

(
b

q4

)k

≡ b(3n−1)/4q(1−3n)/2[3n]q2
(q4/b; q8)(3n−1)/4

(bq8; q8)(3n−1)/4

×
(
1− (1− aq2)(1− q2/a)(1− q2/b)

(1− q)2(1− q4/b)

)
(b− q6n)(ab− 1− a2 + aq6n)

(a− b)(1− ab)

+
[3n]q2(q

2, q6; q8)(3n−1)/4

(aq8, q8/a; q8)(3n−1)/4

(
1− (1− aq2)(1− q2/a)(1− q2/b)

(1− q)2(1− q4/b)

)
× (1− aq6n)(a− q6n)

(a− b)(1− ab)
(mod Φn(q

2)(1− aq6n)(a− q6n)(b− q6n)).

Here we have used the following q-congruences:

(b− q6n)(ab− 1− a2 + aq6n)

(a− b)(1− ab)
≡ 1 (mod (1− aq6n)(a− q6n)),

(1− aq6n)(a− q6n)

(a− b)(1− ab)
≡ 1 (mod b− q6n).

Note that 1− q6n contains the factor Φn(q
2) and so do (q4; q8)(3n−1)/4 and

(q6; q8)(3n−1)/4 since they have the factors 1 − q4n and 1 − q2n, respectively.

Moreover, the factor (bq8; q8)(3n−1)/4 in the denominators of both sides of (17)

is relatively prime to Φn(q
2) when b = 1. Thus, letting b = 1 in (17) and

observing that

(1− q6n)(1 + a2 − a− aq6n) = (1− a)2 + (1− aq6n)(a− q6n),

we see that the right-hand of (17) reduces to

q(1−3n)/2[3n]q2
(q4; q8)(3n−1)/4

(q8; q8)(3n−1)/4

(
1− (1− aq2)(1− q2/a)

(1− q)2(1 + q2)

)
(mod Φn(q

2)2(1− aq6n)(a− q6n)),

as desired. □

Proof of Theorem 1.1. Taking a = 1 in (16), we know that the q-congruence (7)
holds modulo Φn(q

2)4 for M = (3n − 1)/4. It is easy to see that
(q2; q8)4k/(q

8; q8)4k is congruent to 0 modulo Φn(q
2)4 for any k in the range

(3n − 1)/4 < k ≤ n − 1. Therefore, the q-congruence (7) also holds modulo
Φn(q

2)4 for M = n− 1.
Moreover, similarly to the proof of [5, Lemma 2.2], we can prove that (7)

holds modulo [n]q2 . Since the least common multiple of [n]q2 and Φn(q
2)4 is

[n]q2Φn(q
2)3, we complete the proof of the theorem. □
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3. Proof of Proposition 1.2

We first list some basic properties of Morita’s p-adic Gamma function. Let p
be an odd prime. Set Γp(0) = 1, and for all integers n ≥ 1, the p-adic Gamma
function is defined as

Γp(n) = (−1)n
∏

0<k<n
p∤k

k.

Let Zp denote the ring of all p-adic integers. Extend Γp to all x ∈ Zp by
defining

Γp(x) = lim
xn→x

Γp(xn),

where xn is any sequence of positive integers p-adically approaching x. The
following facts can be found in [18]: for any x ∈ Zp,

Γp(x+ 1)

Γp(x)
=

{
−x, p ∤ x,

−1, p | x.
(18)

Γp(x)Γp(1− x) = (−1)a0(x),(19)

where a0(x) ∈ {1, 2, . . . , p} satisfies a0(x) ≡ x (mod p).
In order to prove Proposition 1.2, we also need the following result (see

[18, Theorem 14]).

Lemma 3.1. For any odd prime p and a,m ∈ Zp, we have

(20) Γp(a+mp) ≡ Γp(a) + Γ′
p(a)mp (mod p2).

Proof of Proposition 1.2. By the properties (18)–(20), for p ≡ 3 (mod 4) and
p > 3,

( 12 )(3p−1)/4

(1)(3p−1)/4
=

p

2

Γp(1)Γp(
3p+1

4 )

Γp(
1
2 )Γp(

3p+3
4 )

= (−1)(3p+3)/4 pΓp(1)Γp(
3p+1

4 )Γp(
1−3p

4 )

2Γp(
1
2 )

≡ (−1)(3p+3)/4 pΓp(1)Γp(
1
4 )

2

2Γp(
1
2 )

≡
pΓp(1)Γp(

1
4 )

2Γp(
1
2 )Γp(

3
4 )

(mod p3).

Noticing that Γp(1) = −1 and Γp(
1
2 )

2 = (−1)
p+1
2 = 1, we complete the proof.

□
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