Acknowledgement
This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01009208 and NRF-2021R1A6A1A10044154).
References
- E. Bedford, M. Lyubich, and J. Smillie, Polynomial diffeomorphisms of ℂ2. IV. The measure of maximal entropy and laminar currents, Invent. Math. 112 (1993), no. 1, 77-125. https://doi.org/10.1007/BF01232426
- E. Bedford, M. Lyubich, and J. Smillie, Distribution of periodic points of polynomial diffeomorphisms of ℂ2, Invent. Math. 114 (1993), no. 2, 277-288. https://doi.org/10.1007/BF01232671
- E. Bedford and J. Smillie, Polynomial diffeomorphisms of ℂ2: currents, equilibrium measure and hyperbolicity, Invent. Math. 103 (1991), no. 1, 69-99. https://doi.org/10.1007/BF01239509
- E. Bedford and J. Smillie, Polynomial diffeomorphisms of ℂ2. II. Stable manifolds and recurrence, J. Amer. Math. Soc. 4 (1991), no. 4, 657-679. https://doi.org/10.2307/2939284
- E. Bedford and J. Smillie, Polynomial diffeomorphisms of ℂ2. III. Ergodicity, exponents and entropy of the equilibrium measure, Math. Ann. 294 (1992), no. 3, 395-420. https://doi.org/10.1007/BF01934331
- E. Bedford and J. Smillie, External rays in the dynamics of polynomial automorphisms of ℂ2, in Complex geometric analysis in Pohang (1997), 41-79, Contemp. Math., 222, Amer. Math. Soc., Providence, RI, 1999. https://doi.org/10.1090/conm/222/03175
- J. Diller, R. Dujardin, and V. Guedj, Dynamics of meromorphic maps with small topological degree I: from cohomology to currents, Indiana Univ. Math. J. 59 (2010), no. 2, 521-561. https://doi.org/10.1512/iumj.2010.59.4023
- J. Diller, R. Dujardin, and V. Guedj, Dynamics of meromorphic maps with small topological degree III: geometric currents and ergodic theory, Ann. Sci. Ec. Norm. Super. (4) 43 (2010), no. 2, 235-278. https://doi.org/10.24033/asens.2120
- J. Diller, R. Dujardin, and V. Guedj, Dynamics of meromorphic mappings with small topological degree II: Energy and invariant measure, Comment. Math. Helv. 86 (2011), no. 2, 277-316. https://doi.org/10.4171/CMH/224
- H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109-203; ibid. (2) 79 (1964), 205-326. https://doi.org/10.2307/1970547
- H. Kwon, C. G. Lee, and S.-M. Lee, Regular polynomial automorphisms in the space of planar quadratic rational maps, J. Fixed Point Theory Appl. 22 (2020), no. 4, Paper No. 84, 12 pp. https://doi.org/10.1007/s11784-020-00819-z
- C. G. Lee, The equidistribution of small points for strongly regular pairs of polynomial maps, Math. Z. 275 (2013), no. 3-4, 1047-1072. https://doi.org/10.1007/s00209-013-1169-2
- C. G. Lee and J. H. Silverman, GIT stability of Henon maps, Proc. Amer. Math. Soc. 148 (2020), no. 10, 4263-4272. https://doi.org/10.1090/proc/15055
- D. Mumford, J. Fogarty, and F. Kirwan, Geometric Invariant Theory, third edition, Ergebnisse der Mathematik und ihrer Grenzgebiete (2), 34, Springer-Verlag, Berlin, 1994.
- J. H. Silverman, The Arithmetic of Dynamical Systems, Graduate Texts in Mathematics, 241, Springer, New York, 2007. https://doi.org/10.1007/978-0-387-69904-2
- J. Xie, The dynamical Mordell-Lang conjecture for polynomial endomorphisms of the affine plane, Asterisque 394 (2017), vi+110 pp.