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FIXED POINT THEOREMS IN CONTROLLED RECTANGULAR
METRIC SPACES

Mohamed Rossafi a, ∗ and Abdelkarim Kari b

Abstract. In this paper, we introduce an extension of rectangular metric spaces
called controlled rectangular metric spaces, by changing the rectangular inequality
in the definition of a metric space. We also establish some fixed point theorems for
self-mappings defined on such spaces. Our main results extends and improves many
results existing in the literature. Moreover, an illustrative example is presented to
support the obtained results.

1. Introduction

By a contraction on a metric space (X, d), we understand a mapping T : X → X

satisfying for all x, y ∈ X: d(Tx, Ty) ≤ kd(x, y), where k is a real in [0, 1).
In 1922, Banach proved the following theorem.

Theorem 1.1 ([4]). Let (X, d) be a complete metric space. Let T : X → X be a
contraction. Then:

(i) T has a unique fixed point x ∈ X.
(ii) For every x0 ∈ X, the sequence (xn), where xn+1 = Txn, converges to x.

(iii) We have the following estimate: For every x ∈ X, d(xn, x) ≤ kn

1− k
d(x0, x1),

n ∈ N.

Several authors generalise the previous theorem in various directions [1, 3, 6, 7,
9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24].

In 2000, Branciari [5] initiated the notion of rectangular metric space.
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Definition 1.2 ([5]). Let X be a non-empty set and d : X×X → R+ be a mapping
such that for all x, y ∈ X and for all distinct points u, v ∈ X, each of them different
from x and y, on has

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) for all distinct points x, y ∈ X;
(iii) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) (the rectangular inequality).

Then (X, d) is called a rectangular metric space.

In 2019, Asim et al. [2] introduce the concept of extended b-rectangular metric
spaces.

Definition 1.3 ([2]). Let X be a non empty set, and θ : X × X → [1, +∞[. An
extended b-rectangular metric is a function d : X ×X → [0, +∞[ such that for all
x, y ∈ X and all distinct points u, v ∈ X, each of them distinct from x and y one
has the following conditions:

(d1) d (x, y) = 0, if and only x = y;
(d2) d (x, y) = d (y, x) ;
(d3) d (x, y) ≤ θ (x, y) [d(x, u) + d(u, v) + d(v, y)].

Then (X, d) is called an extended rectangular b-metric space.

Example 1.4 ([2]). Consider X = {1, 2, 3, 4, 5}. Define θ : X ×X → [1, +∞[ by

θ(x, y) = x + y + 1 ∀x, y ∈ X.

Define

d : X ×X → [0, +∞[ by

• d(x, x) = 0 for all x, y ∈ X;
• d(x, y) = d(y, x) for all x, y ∈ X;
• d(1, 3) = d(2, 5) = 70, d(1, 4) = 1000 and d(1, 5) = 1200;
• d(1, 2) = d(2, 3) = d(3, 4) = 60, d(3, 5) = d(4, 5) = d(2, 4) = 400.

Clearly, (X, d) is an extended rectangular b-metric space.

In the next section, we introduce the concept of controlled rectangular metric
space and establish some fixed point results for such mappings in the setting of
complete controlled rectangular metric spaces which generalize the results of Kannan
[10], Reich [20] and Fisher [8] .
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2. Main Result

We begin with the following definition.

Definition 2.1. Given a non-empty set X and α : X ×X → [1,+∞[.
The function d : X ×X → [0,+∞[ is called a controlled rectangular metric if for

all x, y ∈ X and all distinct points u, v ∈ X; each of them distinct from x and y one
has the following conditions:

(d1) d (x, y) = 0, if and only x = y;
(d2) d (x, y) = d (y, x) ;
(d3) d (x, y) ≤ α (x, u) d (x, u) + α (u, v) d (u, v) + α (v, y) d (v, y) .

Then (X, d) is called a controlled rectangular metric space.

Remark 2.2. If, for all x, y ∈ X, α (x, y) = s ≥ 1, then (X, d) is a rectangular
b-metric space, which leads us to conclude that every rectangular b-metric space is
a controlled rectangular metric space. Also a controlled rectangular metric space is
not general an extended rectangular b-metric space.

Example 2.3. Consider X = {1, 2, 3, 4}. Define d : X ×X → [0,+∞[ by

• d(x, x) = 0 for all x, y ∈ X;
• d(1, 2) = 1

2 , d(1, 3) = 1
9 , d(1, 4) = 1

16 ;
• d(2, 3) = 1

12 , d(2, 4) = 1
36 , d(3, 4) = 1

49 .

Define α : X ×X → [1, +∞[ by

α (x, y) = max {x, y} , ∀x, y ∈ X.

Thus, (d1) and (d2) are clearly true. We shale prove that (d3) hold. We have

d(1, 2) =
1
2
≤ α (1, 3) d (1, 3) + α (3, 4) d (3, 4) + α (4, 2) d (4, 2) = 0.58,

and

d(1, 2) =
1
2
≤ α (1, 4) d (1, 4) + α (4, 3) d (4, 3) + α (3, 2) d (3, 2) = 0.52.

Similarly, other cases can be argued. Thus, for all x, y ∈ X with distinct u, v ∈ X.
We get,

d (x, y) ≤ α (x, u) d (x, u) + α (u, v) d (u, v) + α (v, y) d (v, y) .

Hence, (X, d) is controlled rectangular metric space. Note that

d(1, 2) =
1
2

> 0.31 = α (1, 2) [d (1, 3) + d (3, 4) + d (4, 2)] ,
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that is, d is not an extended rectangular b-metric for the α = θ.

On the other hand, in Example 2.4, we replaced d(3, 4) = 60 by d(3, 4) = 49, we
prove that d is a extended rectangular b-metric. Note that

d(1, 4) = 1000 > 992 = α (1, 2) d(1.2) + α (2, 3) d(2.3) + α (3, 4) d(3.4).

That is, d is not a controlled rectangular metric for the θ = α.
We define Cauchy and convergent sequences in controlled rectangular metric

space as follows:

Definition 2.4. Let (X, d) be a controlled rectangular metric space and {xn} be
a sequence in X and x ∈ X. The sequence {xn} converges to x if and only if
lim

n→+∞ d (xn, x) = 0.

Definition 2.5. Let (X, d) be a controlled rectangular metric space and {xn} be a
sequence in X. We say that

(i) {xn} is a Cauchy if and only if for every ε > 0 there exists a positive integer
N = N(ε) such that d(xn, xm) < ε, for all n,m ≥ N.

(ii) (X, d) is complete if and only if each Cauchy sequence in X is convergent.

Lemma 2.6. Let (X, d) be a controlled rectangular metric space and {xn} a Cauchy
sequence in X. If {xn} converges to x ∈ X and converges to y ∈ X, we assume that

lim
n→+∞α(xn, x), lim

n→+∞α(x, xn) and lim
n,m→+∞α(xn, xm)

exist and are finite ∀n, m ∈ N, n 6= m, then x = y.

Proof. If {xn} a Cauchy sequence in X has two limit point x, y ∈ X, such that

lim
n→+∞ d (xn, x) = 0 and lim

n→+∞ d (xn, y) = 0.

Since, {xn} is Cauchy, then so from (d3) we have

d (x, y) ≤ α (x, xn) d (x, xn) + α (xn, xn+1) d (xn, xn+1) + α (xn+1, y) d (xn+1, y) .

By letting n → ∞ in above inequality, we obtain d (x, y) ≤ 0, which implies that
d(x, y) = 0. Therefore, x = y. ¤

Theorem 2.7. Let (X, d) be a complete controlled rectangular metric space, and T

a self mapping on X. If there exists k ∈ ]0, 1[ such that

(2.1) d(Ty, Tx) > 0 ⇒ d(Ty, Tx) ≤ kd(x, y), ∀x, y ∈ X.
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For x0 ∈ X, take xn = Tnx0. Suppose that

(2.2) sup
m≥1

lim
i→∞

α (xi+1, xm)
α (xi+1, xi+2) + α (xi+2, xi+3)
α (xi, xi+1) + α (xi+1, xi+2)

<
1
k2

.

We assume that, for x ∈ X, we have

(2.3) lim
n→+∞α(xn, x), lim

n→+∞α(x, xn) and lim
n,m→+∞α(xn, xm)

exist and are finite ∀n, m ∈ N, n 6= m.
Then T has a unique fixed point in X.

Proof. We choose any x0 be arbitrary, define the iterative sequence {xn} by

x1 = Tx0, x2 = Tx1..., xn = Tnx0.

Step 1. We shall prove that

lim
n→∞ d (xn, xn+1) = 0.

Now, by the hypothesis of theorem, we have

d (xn, xn+1) = d(Txn−1, Txn)

≤ kd(xn−1, xn)

≤ k2d(xn−2, xn−1)

≤ ...

≤ knd(x0, x1).

Taking the limit of the above inequality as n →∞, we deduce that

(2.4) lim
n→∞ d (xn, xn+1) = 0.

Step 2. We shall prove that

lim
n→∞ d (xn, xn+2) = 0.

We assume that xn 6= xm for every n,m ∈ N. Indeed, suppose that xn = xm for
some n = m + k with k > 0, so we have Txn = Txm, and

d(xm, xm+1) = d(xn, xn+1) = d(Txn−1, Txn) ≤ kd(xn−1, xn).

Since k ∈ ]0, 1[, we have

d(xm, xm+1) = d(xn, xn+1) < d(xn−1, xn).

Continuing this process, we have

d(xm, xm+1) < d(xm, xm+1).
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which is a contradiction. Therefore,

d(xm, xn) > 0 for every n,m ∈ N, n 6= m.

Now, substituting x = xn−1 and y = xn+1 in the (2.1), we obtain

d(xn, xn+2) = d(Txn−1, Txn+1)

≤ kd(xn−1, xn+1)

≤ k2d(xn−2, xn)

≤ ...

≤ knd(x0, x2).

If we take the limit of the above inequality as n → +∞ we deduce that

(2.5) lim
n→∞ d (xn, xn+2) = 0.

Step 3. We shall prove that, xn is a Cauchy sequence in (X, d) i.e,

lim
n,m→∞ d (xn, xm) = 0 ∀n, m ∈ N.

Denote by di = d(xi, xi+1) for all i ∈ N. We distinguish two cases.
Case 1: Assume that m = n+2l+1 with l ≥ 1. By property (3) of the controlled

rectangular metric spaces, we have

d(xn, xm) = d(xn, xn+2l+1)

≤ α(xn, xn+1)d(xn, xn+1) + α(xn+1, xn+2)d(xn+1, xn+2)

+ α(xn+2, xn+2l+1)d(xn+2, xn+2l+1)

≤ α(xn, xn+1)d(xn, xn+1) + α(xn+1, xn+2)d(xn+1, xn+2)

+ α(xn+2, xn+2l+1)α(xn+2, xn+3))d(xn+2, xn+3)

+ α(xn+2, xn+2l+1)α(xn+3, xn+4))d(xn+3, xn+4)

+ α(xn+2, xn+2l+1)α(xn+4, xn+2l+1))d(xn+4, xn+2l+1)

≤ α(xn, xn+1)d(xn, xn+1) + α(xn+1, xn+2)d(xn+1, xn+2)

+ α(xn+2, xn+2l+1)α(xn+2, xn+3))d(xn+2, xn+3)

+ α(xn+2, xn+2l+1)α(xn+3, xn+4))d(xn+3, xn+4)

+ α(xn+2, xn+2l+1)α(xn+4, xn+2l+1))α(xn+4, xn+5)d(xn+4, xn+5)
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+ α(xn+2, xn+2l+1)α(xn+4, xn+2l+1))α(xn+5, xn+6)d(xn+5, xn+6)

+ α(xn+2, xn+2l+1)α(xn+4, xn+2l+1))α(xn+6, xn+2l+1)d(xn+6, xn+2l+1)

≤ α(xn, xn+1)d(xn, xn+1) + α(xn+1, xn+2)d(xn+1, xn+2)

+ α(xn+2, xn+2l+1)α(xn+2, xn+3))d(xn+2, xn+3)

+ α(xn+2, xn+2l+1)α(xn+3, xn+4))d(xn+3, xn+4)

+ α(xn+2, xn+2l+1)α(xn+4, xn+2l+1))α(xn+4, xn+5)d(xn+4, xn+5)

+ α(xn+2, xn+2l+1)α(xn+4, xn+2l+1))α(xn+5, xn+6)d(xn+5, xn+6)

+ ... + α(xn+2, xn+2l+1)α(xn+4, xn+2l+1))× ...× α(xn+2l−2, xn+2l+1)×
×[α(xn+2l−2, xn+2l−1)d(xn+2l−2, xn+2l−1)+α(xn+2l−1, xn+2l)d(xn+2l−1, xn+2l)]

+ α(xn+2, xn+2l+1)× α(xn+4, xn+2l+1)× ...×
× α(xn+2l−2, xn+2l+1)α(xn+2l, xn+2l+1)d(xn+2l, xn+2l+1)

Therefore,

d(xn, xm)

≤ α(xn, xn+1)dn + α(xn+1, xn+2)dn+1 + α(xn+2, xn+2l+1)α(xn+2, xn+3))dn+2

+ α(xn+2, xn+2l+1)α(xn+3, xn+4))dn+3

+ α(xn+2, xn+2l+1)α(xn+4, xn+2l+1)α(xn+4, xn+5)dn+4

+ α(xn+2, xn+2l+1)α(xn+4, xn+2l+1))α(xn+5, xn+6)dn+5

+ ...

+ α(xn+2, xn+2l+1)× ...× α(xn+2l−2, xn+2l+1)

[α(xn+2l−2, xn+2l+1))dn+2l−2 + α(xn+2l−1, xn+2l))dn+2l−1]

+ α(xn+2, xn+2l+1)α(xn+4, xn+2l+1))× ...× α(xn+2k−2, xn+2l+1)

[α(xn+2l, xn+2l+1))dn+2l]

≤ α(xn, xn+1)d(x0, x1)kn + α(xn+1, xn+2)d(x0, x1)kn+1

+ α(xn+2, xn+2l+1)
[
α(xn+2, xn+3))kn+2 + α(xn+3, xn+4))kn+3

]
d(x0, x1)

+ ...

+ α(xn+2, xn+2l+1)× ...× α(xn+2l−2, xn+2l+1)×
×

[
α(xn+2l−2, xn+2l−1))kn+2l−2 + α(xn+2l−1, xn+2l))kn+2l−2

]
d(x0, x1)

+ α(xn+2, xn+2l+1)α(xn+4, xn+2l+1)× ...×
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× α(xn+2l−2, xn+2l+1)α(xn+2l, xn+2l+1))kn+2ld(x0, x1)

≤ α(xn, xn+1)d(x0, x1)kn + α(xn+1, xn+2)d(x0, x1)kn+1

+ α(xn+2, xn+2l+1)
[
α(xn+2, xn+3))kn+2 + α(xn+3, xn+4))kn+3

]
d(x0, x1)

+ ...

+ α(xn+2, xn+2l+1)α(xn+4, xn+2l+1)× ...× α(xn+2l−2, xn+2l+1)×
×

[
α(xn+2l−2, xn+2l−1))kn+2l−2 + α(xn+2l−1, xn+2l))kn+2l−2

]
d(x0, x1)

+ α(xn+2, xn+2l+1)α(xn+4, xn+2l+1))× ...×
× α(xn+2l−2, xn+2l+1)α(xn+2l, xn+2l+1)×
×

[
α(xn+2l, xn+2l+1)kn+2ld(x0, x1) + α(xn+2l+1, xn+2l+2)kn+2l+1d(x0, x1)

]

≤ α(xn, xn+1)d(x0, x1)kn + α(xn+1, xn+2)d(x0, x1)kn+1

+
i=n+2l∑

i=n+2

j=i∏

j=n+2

α(xj , xn+2l+1)
[
α(xi, xi+1)ki + α(xi+1, xi+2)ki+1

]
d(x0, x1).

Above, we make use of that α(x, y) ≥ 1.

Let Sp =
i=p∑

i=0

j=i∏

j=0

α(xj , xn+2l+1)
[
α(xi, xi+1)ki + α(xi+1, xi+1)ki+1

]
d(x0, x1).

Hence, we have

d(xn, xm) ≤ d(x0, x1)
[
α(xn, xn+1)kn + α(xn+1, xn+2)kn+1 + Sn+m−1 − Sn+1

]
.

Now, let the term ai =
∏j=i

j=0 α(xj , xm)
[
α(xi, xi+1)ki + α(xi+1, xi+2)ki+1

]
.

On the other hand

sup
m≥1

lim
i→∞

ai+1

ai
= sup

m≥1
lim
i→∞

α (xi+1, xm)
α (xi+1, xi+2) k + α (xi+2, xi+3) k2

α (xi, xi+1) + α (xi+1, xi+2) k

≤ sup
m≥1

lim
i→∞

α (xi+1, xm)
α (xi+1, xi+2) + α (xi+2, xi+3)
α (xi, xi+1) + α (xi+1, xi+2)

<
1
k2

.

Thus the series
i=∞∑

i=n+2

j=i∏

j=n+2

α(xj , xn+2l+1)
[
α(xi, xi+1)ki + α(x2i+1, xi+1)ki+1

]
d(x0, x1)

is converges. On the other hand

lim
n→∞α(xn, xn+1)d(x0, x1)kn = lim

n→∞α(xn+1, xn+2)d(x0, x1)kn+1 = 0.

We conclude that
lim

n,m→∞ d(xn, xm) = 0.
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Case 2: m = n + 2l similar to case 1 we have

d(xn, xn+2l) ≤ α(xn, xn+2)d(xn, xn+2) + α(xn+2, xn+3)d(xn+2, xn+3)

+ α(xn+3, xn+2k)d(xn+3, xn+2l+1)

≤ α(xn, xn+2)d(xn, xn+2) + α(xn+2, xn+3)d(xn+2, xn+3)

+ α(xn+3, xn+2l)×
[
α(xn+3, xn+4))d(xn+3, xn+4)

+ α(xn+4, xn+5))d(xn+4, xn+5) + α(xn+5, xn+2l))d(xn+5, xn+2l)
]

≤ α(xn, xn+2)d(xn, xn+2) + α(xn+2, xn+3)d(xn+2, xn+3)

+ α(xn+3, xn+2l)α(xn+3, xn+4))d(xn+3, xn+4)

+ α(xn+3, xn+2l)α(xn+4, xn+5))d(xn+4, xn+5)

+ α(xn+3, xn+2l)α(xn+5, xn+2l))d(xn+5, xn+2l)

≤ α(xn, xn+2)d(xn, xn+2) + α(xn+2, xn+3)d(xn+2, xn+3)

+ α(xn+3, xn+2l)α(xn+3, xn+4))d(xn+3, xn+4)

+ α(xn+3, xn+2l)α(xn+5, xn+2l))α(xn+5, xn+6)d(xn+5, xn+6)

+ ... + α(xn+3, xn+2l)α(xn+5, xn+2l))× ...× α(xn+2l−3, xn+2l)×
× [

α(xn+2l−3, xn+2l−2)d(xn+2l−3, xn+2l−2)

+ α(xn+2l−2, xn+2l−1)d(xn+2l−2, xn+2l−1)
]

+ α(xn+3, xn+2l)α(xn+5, xn+2l))× ...×
× α(xn+2l−3, xn+2l)α(xn+2l−1, xn+2l)d(xn+2l−1, xn+2l)

≤ α(xn, xn+2)knd(x0, x2) + α(xn+2, xn+3)kn+2d(x0, x1)

+ α(xn+3, xn+2l)α(xn+3, xn+4)))kn+3d(x0, x1)

+ ... + α(xn+3, xn+2l)α(xn+5, xn+2k))× ...× α(xn+2l−3, xn+2l)

× [
α(xn+2l−3, xn+2l−2))kn+l−3d(x0, x1)×

+ α(xn+2l−2, xn+2k−1))kn+l−2d(x0, x1))
]

+ α(xn+3, xn+2l)α(xn+5, xn+2l))× ...×
× α(xn+2l−3, xn+2l)α(xn+2l−1, xn+2l)×
×[

α(xn+2l−1, xn+2l)kn+l−1d(x0, x1) + α(xn+2l, xn+2l)kn+ld(x0, x1)
]
.

Thus, we conclude

d(xn, xm) ≤ α(xn, xn+2)knd(x0, x2) + α(xn+2, xn+3)kn+2d(x0, x1)+
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+
i=n+2l−1∑

i=n+3

j=i∏

j=n+3

α(xj , xn+2l)
[
α(xi, xn+2l)ki + α(xi+1, xi+2)ki+2

]
d(x0, x1)

Above, we make use of that α(x, y) ≥ 1.

Let Sq =
i=q∑

i=0

j=i∏

j=0

α(xj , xn+2l)
[
α(xi, xi+1)ki + α(xi+1, xi+2)ki+1

]
d(x0, x1).

Then, we have

d(xn, xm) ≤ d(x0, x2)α(xn, xn+2)kn + d(x0, x1)
[
α(xn+2, xn+3)kn+2 + Sm−1 − Sn−2

]

On the other hand

sup
m≥1

lim
i→∞

ai+1

ai
= sup

m≥1
lim
i→∞

α (xi+1, xm)
α (xi+1, xi+2) k + α (xi+2, xi+3) k2

α (xi, xi+1) + α (xi+1, xi+2) k

≤ sup
m≥1

lim
i→∞

α (xi+1, xm)
α (xi+1, xi+2) + α (xi+2, xi+3)
α (xi, xi+1) + α (xi+1, xi+2)

<
1
k2

By using the Ratio Test, it is not difficult to that the series
i=∞∑

i=0

j=i∏

j=0

α(xj , xn+2l+1)
[
α(xi, xi+1)ki + α(xi+1, xi+1)ki+1

]
d(x0, x1)

converges. Hence d(xn, xm) converges to zero as m →∞ . Thus, by case 1 and case
2, we have

(2.6) lim
n,m→∞ d(xn, xm) = 0.

We conclude that the sequence xn is a Cauchy sequence in the complete controlled
rectangular metric space (X, d), so xn converges to some z ∈ X.

We shall show that z is a fixed point of T.

No, we show that d(Tz, z) = 0. Arguing by contradiction, we assume that
d(Tz, z) > 0. From the controlled rectangular inequality we get,
(2.7)

d (z, Tz) ≤ α(z, xn)d (z, xn) + α(xn, Txn)d (xn, Txn) + α(Txn, T z)d (Txn, T z) .

From assumption of the hypothesis, we have

(2.8) d (z, Tz) ≤ α(z, xn)d (z, xn) + α(xn, Txn)d (xn, Txn) + kα(Txn, T z)d (xn, z) .

Therefore,

(2.9) d (z, Tz) ≤ d (z, xn) [α(z, xn) + kα(Txn, T z)] + α(xn, Txn)d (xn, Txn) .

By letting n → +∞ above inequality and using (3.3), we deduce that d (z, Tz) = 0
and that is Tz = 0. Thus T has a fixed point z ∈ X.
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Uniqueness: assume there exist two fixed points of T say z and u such that z 6= u.
By the contractive property of T we have

d(z, u) = d(Tz, Tu) ≤ kd(z, u).

Which is a contradiction. Thus, T has a unique fixed point. ¤

Theorem 2.8. Let (X, d) be a complete controlled rectangular metric space, and T

a self mapping on X satisfying the following condition: for all x, y ∈ X there exists
0 < k < 1

2 such that

(2.10) d(Tx, Ty) ≤ k [d(x, Tx) + d(y, Ty)] .

Let x0 ∈ X, take xn = Tnx0 Also, if

(2.11) sup
m≥1

lim
i→∞

α (xi+1, xm)
α (xi+1, xi+2) + α (xi+2, xi+3)
α (xi, xi+1) + α (xi+1, xi+2)

<
1
k2

.

We assume that lim
n→+∞α(xn, x), lim

n→+∞α(x, xn) and lim
n,m→+∞α(xn, xm), exist and

are finite for all n,m ∈ N, n 6= m Such that

(2.12) lim
n→+∞α(Txn, Tx) <

1
k
.

Then T has a unique fixed point in X.

Proof. Let x0 ∈ X and define the sequence xn as follows x1 = Tx0, x2 = Tx1, ..., xn =
Txn−1 = Tnx0, ... Now we prove that

lim
n→∞ d(xn, xn+1) = 0

and
lim

n→∞ d(xn, xn+2) = 0.

Using the contractive property with x = xn−1 and y = xn, we obtain

d(xn, xn+1) = d(Txn−1, Txn) ≤ k [d(xn−1, xn) + d(xn, xn+1)]

⇒ d(xn, xn+1) ≤ k

1− k
d(xn−1, xn).

Since 0 < k < 1
2 , one can easily deduce that 0 < k

1−k < 1. So, let β = k
1−k hence,

d(xn, xn+1) ≤ βd(xn−1, xn)

≤ β2d(xn−2, xn−1)

≤ ...

≤ βnd(x0, x1).
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Therefore,

(2.13) lim
n→∞ d(xn, xn+1) = 0.

Appliyin (2.10) with x = xn−1 and y = xn+1, we obtain

d(xn, xn+2) = d(Txn−1, Txn+1) ≤ k [d(xn−1, xn) + d(xn+1, xn+2)] .

Thus, by using the fact that d(xn, xn+1) → 0 as n →∞, we deduce that

(2.14) lim
n→∞ d(xn, xn+2) = 0.

Now, similar to proof of Theorem 2.7, we deduce that the sequence {xn} is a Cauchy
sequence in X. Since (X, d) is a complete controlled rectangular metric space, we
conclude that xn converges to some z in X.

We shall show that z is a fixed point of T.

No, we show that d(Tz, z) = 0. From the controlled rectangular inequality we
get,
(2.15)

d (z, Tz) ≤ α(z, xn)d (z, xn) + α(xn, Txn)d (xn, Txn) + α(Txn, T z)d (Txn, T z) .

From assumption of the hypothesis, we have

d
(
z, Tz

) ≤ α(z, xn)d
(
z, xn

)
+ α(xn, Txn)d

(
xn, Txn

)
(2.16)

+ kα(Txn, T z)
[
d
(
xn, Txn

)
+ d

(
z, Tz

)]
.

Therefore,

d
(
z, Tz

) ≤ 1
1− kα(Txn, T z)

[
α(z, xn)d

(
z, xn

)
+ α(xn, Txn)d

(
xn, Txn

)
(2.17)

+ α(Txn, T z)d
(
xn, Txn

)]
.

Letting n →∞ in (2.17) and using (2.12), we obtain

d (z, Tz) ≤ 0.

Which is a contradiction. Thus, z = Tz.
Uniqueness: assume there exist two fixed points of T say z and u such that z 6= u.

By the contractive property of T we have

d(z, u) = d(Tz, Tu) ≤ k [d(z, Tz) + d(u, Tu)] = 0.

Hence z = u. ¤
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Theorem 2.9. Let (X, d) be a complete controlled rectangular metric space, and T

a self mapping on X satisfying the following condition: for all x, y ∈ X there exists
0 < λ < 1

3 such that

(2.18) d(Tx, Ty) ≤ λ [d(x, y) + d(x, Tx) + d(y, Ty)] .

Let x0 ∈ X, take xn = Tnx0 Also, if

(2.19) sup
m≥1

lim
i→∞

α (xi, xm)
α (xi+1, xi+2) + α (xi+2, xi+3)
α (xi, xi+1) + α (xi+1, xi+2)

<
1
k2

.

We assume that lim
n→+∞α(xn, x), lim

n→+∞α(x, xn) and lim
n,m→+∞α(xn, xm), exist and

are finite for all n,m ∈ N, n 6= m Such that
(2.20)

lim
n→+∞α(xn, T 2xn) <

1
λ

, lim
n→+∞α(Txn, Tx) <

1
λ

and lim
n→+∞α(Tx, Txn) <

1
λ

.

Then T has a unique fixed point in X.

Proof. Let x0 ∈ X and define the sequence xn as follows x1 = Tx0, x2 = Tx1, ..., xn =
Txn−1 = Tnx0, ... Now we prove that

lim
n→∞ d(xn, xn+1) = 0

and

lim
n→∞ d(xn, xn+2) = 0.

Using the contractive property, we have

d(xn, xn+1) = d(Txn−1, Txn) ≤ λ [d(xn−1, xn) + d(xn−1, xn) + d(xn, xn+1)] .

So, we have

d(xn, xn+1) ≤ 2λ

1− λ
d(xn−1, xn).

Since 0 < λ < 1
3 , one can easily deduce that 0 < 2λ

1−λ < 1. So, let β = 2λ
1−λ .

Hence,

d(xn, xn+1) ≤ βd(xn−1, xn)

≤ β2d(xn−2, xn−1)

≤ ...

≤ βnd(x0, x1).
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Therefore,

(2.21) lim
n→∞ d(xn, xn+1) = 0.

Applying (2.18) with x = xn−1 and y = xn+1, we obtain

d(xn, xn+2) = d(Txn−1, Txn+1) ≤ λ [d(xn−1, xn) + d(xn+1, xn+2 + d(xn−1, xn+1)]

Using the property (3) of the controlled rectangular metric space we get,

d(xn, xn+2) ≤ λ [d(xn−1, xn+1) + d(xn−1, xn) + d(xn+1, xn+2)]

≤ λ (d(xn−1, xn) + d(xn+1, xn+2))

+ λ
[
α(xn−1, xn+2)d(xn−1, xn+2) + α(xn+2, xn)d(xn+2, xn)

+ α(xn, xn+1)d(xn, xn+1)
]

≤ λ (d(xn−1, xn) + d(xn+1, xn+2))

+ λ [α(xn+2, xn)d(xn+2, xn) + α(xn, xn+1)d(xn, xn+1)]

+ λα(xn−1, xn+2)×
× [

α(xn−1, xn)d(xn−1, xn) + α(xn, xn+1)d(xn, xn+1)

+ α(xn+1, xn+2)d(xn+1, xn+2))
]

Therefore, we have

(2.22) d(xn, xn+2) ≤ d(xn−1, xn)[
2λ + λα(xn, xn+1) + λα(xn−1, xn+2) [α(xn−1, xn)) + α(xn, xn+1) + α(xn+1, xn+2)]

1− λα(xn, xn+2)

]

Letting n →∞ in (2.22), using (2.20), and (2.21), we obtain

(2.23) lim
i→∞

d(xn, xn+2) = 0.

Now, similarly to prove of Theorem (2.7), we deduce that the sequence {xn} is a
Cauchy sequence. Since (X, d) is a complete controlled rectangular metric space, we
conclude that xn converges to some z in X.

We shall show that z is a fixed point of T. No, we show that d(Tz, z) = 0. From
the controlled rectangular inequality we get,
(2.24)

d (z, Tz) ≤ α(z, xn)d (z, xn) + α(xn, Txn)d (xn, Txn) + α(Txn, T z)d (Txn, T z) .
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From assumption of the hypothesis, we have

(2.25) d (z, Tz) ≤ α(z, xn)d (z, xn) + α(xn, Txn)d (xn, Txn) + λα(Txn, T z)

[d (xn, Txn) + d (z, Tz) + d (xn, z)] .

Letting n →∞ in (2.25), we obtain

d (z, Tz) ≤ λ lim
n→∞α(Txn, T z) [d (z, Tz)] < d (z, Tz) .

Which is a contradiction. Thus, z = Tz.
Uniqueness: assume there exist two fixed points of T say z and u such that z 6= u.

By the contractive property of T we have

d(z, u) = d(Tz, Tu) ≤ λ [d(z, u) + d(z, Tz) + d(u, Tu)] = λd(z, Tz) < d(z, u).

Hence z = u. ¤

In the following we prove some new fixed point result for rational contraction of
Fisher [8] type in the context of controlled rectangular metric space.

Theorem 2.10. Let (X, d) be a complete controlled rectangular metric space, and T

a self mapping on X satisfying the following condition: for all x, y ∈ X there exists
λ, β ∈ ]0, 1[ where λ + β < 1. For x0 ∈ X, take xn = Tnx0. Such that

(2.26) d(Tx, Ty) ≤ λd(x, y) + β
d(x, Tx) + d(y, Ty)

1 + d(x, y)
.

Also, if

(2.27) sup
m≥1

lim
i→∞

α (xi+1, xm)
α (xi+1, xi+2) + α (xi+2, xi+3)
α (xi, xi+1) + α (xi+1, xi+2)

<
1

(β + λ)2
.

We assume that lim
n→+∞α(xn, x), lim

n→+∞α(x, xn) and lim
n,m→+∞α(xn, xm), exist and

are finite for all n,m ∈ N, n 6= m Such that
(2.28)

lim
n,m→+∞α(xn, xm) <

1
(β + λ)

, lim
n→+∞α(xn, x) <

1
(β + λ)

and lim
n→+∞α(xn, x) <

1
(β + λ)

.

Then T has a unique fixed point in X.

Proof. Let x0 ∈ X and define the sequence xn as follows x1 = Tx0, x2 = Tx1, ..., xn =
Txn−1 = Tnx0, ... Now we prove that

lim
n→∞ d(xn, xn+1) = 0

and
lim

n→∞ d(xn, xn+2) = 0.
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Using the contractive property we have

d(xn, xn+1) = d(Txn−1, Txn)

≤ λd(xn−1, xn) + β
d(xn−1, xn)d(xn, xn+1)

1 + d(xn−1, xn)
≤ λd(xn−1, xn) + βd(xn, xn+1),

which implies

d(xn, xn+1) ≤ λ

1− β
d(xn−1, xn) = γd(xn−1, xn),

where γ = λ
1−β , then γ ∈ ]0, 1[. Thus, we have

d(xn, xn+1) ≤ γd(xn−1, xn)

≤ γ2d(xn−2, xn−1)

≤ ...

≤ γnd(x0, x1).

Therefore,

(2.29) lim
n→∞ d(xn, xn+1) = 0.

Applying (2.26) with x = xn−1 and y = xn+1, we obtain

d(xn, xn+2) = d(Txn−1, Txn+1)

≤ λd(xn−1, xn+1) + β
d(xn−1, xn)d(xn+1, xn+2)

1 + d(xn−1, xn)
≤ λd(xn−1, xn+1) + βd(xn, xn+1)

≤ βd(xn, xn+1) + λ
[
α(xn−1, xn+2)d(xn−1, xn+2)

+ α(xn+2, xn)d(xn+2, xn)α(xn, xn+1)d(xn, xn+1)
]

≤ βd(xn, xn+1) + λ
[
α(xn+2, xn)d(xn+2, xn) + α(xn, xn+1)d(xn, xn+1)

]

+ λα(xn−1, xn+2)
[
α(xn−1, xn)d(xn−1, xn)

+ α(xn, xn+1)d(xn, xn+1)α(xn+1, xn+2)d(xn+1, xn+2)
]
,

which implies

(2.30) d(xn, xn+2) ≤ d(xn−1, xn)
1− λα(xn+2, xn)

[β + λα(xn, xn+1) + α(xn−1, xn+2) (α(xn−1, xn) + α(xn, xn+1) + α(xn+1, xn+2))] .
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Thus, by using the fact that d(xn, xn+1) → 0 as n →∞ and using (2.28), we deduce
that

(2.31) lim
n→∞ d(xn, xn+2) = 0.

Now, similarly to prove of Theorem (2.7), we deduce that the sequence {xn} is a
Cauchy sequence in X. Since (X, d) is a complete controlled rectangular metric
space, we conclude that xn converges to some z in X.

We shall show that z is a fixed point of T. No, we show that d(Tz, z) = 0. From
the controlled rectangular inequality we get,
(2.32)

d (z, Tz) ≤ α(z, xn)d (z, xn) + α(xn, Txn)d (xn, Txn) + α(Txn, T z)d (Txn, T z) .

From assumption of the hypothesis, we have

d (z, Tz) ≤ α(z, xn)d (z, xn) + α(xn, Txn)d (xn, Txn) + α(Txn, T z)(2.33) [
λd (xn, z) + β

d (xn, Txn) d (z, Tz)
1 + d (xn, z)

]
.

By letting n → +∞ in (2.33), we obtain

d (z, Tz) ≤ 0.

Which is a contradiction. Thus, z = Tz.
Uniqueness: assume there exist two fixed points of T say z and u such that z 6= u.

By the contractive property of T we have

d(z, u) = d(Tz, Tu) ≤ λd(z, u) + β
d(z, Tz)d(u, Tu)

1 + d(z, u)
= λd(z, u) < d(z, u).

Hence z = u. ¤

Example 2.11. Let X = A ∪ B, where A = { 1
n : n ∈ {2, 3, 4, 5}} and B = [1, 2].

Define d : X ×X → [0,+∞[ as follows:

{
d(x, y) = d(y, x) for all x, y ∈ X;

d(x, y) = 0 ⇔ y = x.
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and 



d

(
1
3
,
1
4

)
= d

(
1
4
,
1
5

)
= 0, 04

d

(
1
3
,
1
5

)
= d

(
1
4
,
1
6

)
= 0, 09

d

(
1
3
,
1
6

)
= d

(
1
5
,
1
6

)
= 0, 36

d (x, y) = (|x− y|)2 otherwise.

Define mapping α : X → X by

α(x, y) =

{
max{x, y}+ 2 if x, y ∈ [1, 2]

3 otherwise.

Then (X, d) is a is controlled rectangular metric space. However we have the fol-
lowing:

1) (X, d) is not a metric space, as

d

(
1
3
,
1
6

)
= 0.36 > 0.13 = d

(
1
3
,
1
4

)
+ d

(
1
4
,
1
6

)
.

2) (X, d) is not a controlled metric space, as

d

(
1
5
,
1
6

)
= 0.36 > 0.3033 = α

(
1
5
,
1
4

)
d

(
1
5
,
1
4

)
+ α

(
1
4
,
1
6

)
d

(
1
4
,
1
6

)
.

3) (X, d) is not a rectangular metric space, as

d

(
1
5
,
1
6

)
= 0.36 > 0.22 = d

(
1
5
,
1
3

)
+ d

(
1
3
,
1
4

)
+ d

(
1
4
,
1
6

)
.

Define mapping T : X → X by

T (x) =

{
x

1
2 if x ∈ [1, 2]

1 if x ∈ A.

Then, T (x) ∈ [1, 2]. Let k = 1
2 .

Consider the following possibilities:
case 1: x, y ∈ [1, 2] with x 6= y, assume that x > y.

d(Tx, Ty) =
[
x

1
2 − y

1
2

]2
.

and

k.d(x, y)) =
1
2

[x− y]2 .
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On the other hand

d(Tx, Ty)− k.d(x, y)) =
[
x

1
2 − y

1
2

]2
− 1

2
[x− y]2

=
1
2

(
x

1
2 − y

1
2

)(√
2x

1
2 −

√
2y

1
2 + x− y

)(√
2− x

1
2 − y

1
2

)
.

Since x, y ∈ [1, 2], then (√
2− x

1
2 − y

1
2

)
≤ 0.

Which implies that

d(Tx, Ty) ≤ k.d(x, y)).

case 2: x ∈ [1, 2] , y ∈ A or y ∈ [1, 2] , x ∈ A .

Therefore, T (x) = x
1
2 , T (y) = 1, then d(Tx, Ty) =

(
|x 1

2 − 1|
)2

=
(
x

1
2 − 1

)2
.

Since, x ≥ y for all x ∈ [1, 2] , y ∈ A. Therefore, k.d(x, y) = 1
2 (x− y)2 .

On the other hand

0 ≤
(
x

1
2 − 1

)2
≤

(
2

1
2 − 1

)2

≤ 2
9

=
1
2

(
1− 1

3

)2

≤ 1
2

(
x− 1

3

)2

≤ 1
2

(x− y)2 .

Which implies that

d(Tx, Ty) ≤ k.d(y, Ty)).

case 3: x, y ∈ A

d(Tx, Ty) = 0.

Which implies that

d(Tx, Ty) ≤ k.d(y, Ty)).

Note that for each x ∈ X,

Tn(x) =

{
x

1
2n if x ∈ [1, 2]

1 if x ∈ A.
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Thus we obtain:

lim
i→∞

sup
m≥1

α (xi, xm)
α (xi+1, xi+2) + α (xi+2, xi+3)
α (xi, xi+1) + α (xi+1, xi+2)

= 3 < 4 =
1
k2

.

On the other hand

lim
n→+∞α(xn, x) = lim

n→+∞α(x, xn) ≤ 4 and lim
n,m→+∞α(xn, xm) = 3 ∀n, m ∈ N, n 6= m.

Therefore, all conditions of Theorem (3.7) are satisfied hence T has a unique fixed
point Z = 1.
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