Original Research Article

Variation in Phenotypic Traits in Onion (*Allium cepa* L.) Germplasm Collections

Binod Prasad Luitel^{1,2}, JiWon Han³, Myeong Cheoul Cho⁴ and Min-Seon Choi³*

¹Post-doc Researcher, ³Researcher and ⁴Senior Researcher, Allium Vegetable Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Muan 58545, Korea ²Senior Scientist, National Horticulture Research Center, Nepal Agricultural Research Council, Khumaltar, Lalitpur 5459, Nepal

Abstract - Variations in phenotypic traits are important for onion genetic improvement. The aim of this study was to identify the phenotypic traits of temporary genetic resources and the best accessions for the development of onion breeding programs. Sixteen phenotypic traits of 79 onion accessions were studied. The descriptive statistics of phenotypic traits exhibited a high variation in onion accessions. Among the 79 evaluated accessions, 64.55% had a large bulb neck width and 44.30% had a circular bulb shape. Principal component analysis showed that six principal components (PCs) accounted for 72.65% of the total variation. The main factors contributing to PC1 were bulb weight, equatorial and bulb polar diameters, plant height, and degree of splitting into bulblets, whereas those contributing to PC2 were the bulb color of the epidermal cells of the fleshy scales and color of the dry skin on the bulb. The accessions were classified into three groups—clusters 1, 2, and 3. Cluster 2 accessions were the most suitable for selecting large and circular bulb-shaped onion cultivars. The phenotypic variation observed in this study may help to select potential accessions for breeding new onion cultivars.

Key words - Accession, Cluster, Core collection, Phenotypic trait, Principal component

Introduction

Onions (*Allium cepa* L.) are one of the most widely grown vegetables worldwide (FAOSTAT, 2022). Southwest Asia is the gene center for onions (Bagci *et al.*, 2021; Gokce, 2022), and the Mediterranean region is the secondary center of origin (Castell and Portas, 1994). The economic importance of onion is based on their culinary use, nutritional value, and health benefits (Benkeblia, 2005). Despite the importance of onions, research on their genetic improvement is limited compared to that of other major vegetables (McCallum *et al.*, 2008). One reason might be improper genetic resource identification (Cross, 1998). Normally, variety improvement depends on the genetic variability of the germplasm (Mallor *et al.*, 2014; Mallor Gimenez *et al.*, 2011; Manjunathagowda, 2022). Exploration of new onion genetic resources and their characterization and exploitation have been hampered by out-breeding and biennial

*Corresponding author. E-mail : csm3962@korea.kr Tel. +82-61-450-7407 growth habits (McCallum, 2007).

Short and intermediate-day onion cultivars were first introduced in the southern parts of Korea in the 1950s and are currently predominantly grown in Korea. Intermediate-day onion cultivars are widely grown in southern South Korea. In 2022, onions were cultivated across 17,655 ha with a total production of 1.2 million tonnes, but production is decreasing (Korea Agro-Fisheries and Food Trade Corporation, 2022). In Korea, the low seed self-sufficiency rate (\sim 30%) and high seedling costs (~18% of the production costs) have increased the financial burden on onion growers. By 2022, ~1, 800 onion cultivars were registered for production, import, and distribution and most of the cultivated varieties were F1 hybrids (Korea Seed Association, 2022). Most F1 hybrids are imported from Japanese seed companies, although the origin of these cultivars has not yet been identified (Lee et al., 2020). Currently, farmers typically grow onion cultivars that are recommended by seed distributors or obtained from neighboring onion growers rather than from formalized seed distribution schemes. F₁ hybrid varieties have a narrow genetic base and can replace

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

old domestic varieties that contain potential adaptive genes. Therefore, the evaluation of novel onion genetic resources is important for selecting better traits and enhancing the competitiveness of domestic cultivars in Korea.

Variety improvement and hybrid breeding depend on the genetic variability and diversity of the germplasm (Manjunathagowda, 2022; Ojuederie *et al.*, 2014). Knowledge of the genetic variation present in the gene pool of onions is important for breeders, and helps them to select genotypes based on their distinctiveness for variety development (Dangi *et al.*, 2018; Manjunathagowda and Selvakumar, 2021). A selection of genetically diverse parents is necessary for successful recombination in breeding programs (Akter *et al.*, 2015).

Plant genetic materials adapt to a region over time and substantial changes occur in their genetic structures because of environmental conditions. Therefore, studying morphological variation and phenotypic diversity is important for breeding programs (Yuguda *et al.*, 2017). Many researchers (Azimi *et al.*, 2020; Bagci *et al.*, 2022; Lee *et al.*, 1996; Mallor Gimenez *et al.*, 2011; Mousavizadeh *et al.*, 2006; Sunil *et al.*, 2014) in different countries have performed studies to collect, characterize, and determine the phenotypic diversity of onion genetic resources. They reported high levels of morphological variation in the bolting rate, bulb diameter, bulb shape index, bulb weight, bulb shape and base color of the dry skin in onion accessions.

The Allium Vegetable Research Institute (AVRI) has mandated research on breeding new cultivars of onion, garlic, and green onion as well as increasing the self-sufficiency rate of domestic cultivars. Both the AVRI and the National Agrobiodiversity Center (NAC) have conducted research on the regeneration and trait identification of temporary onion genetic resources. Furthermore, these germplasms must be characterized to remove redundant accessions and to identify genetically distinct accessions for onion breeding programs. This study will help in generating information for creating a database for this purpose. Morphological characterization is the first step in the description and classification of genetic resources (Smith and Smith, 1989). The analysis of germplasm morphological traits provides useful information to breeders for preliminary evaluation and determination of the diversity status (Asare et al., 2011). Previous researchers (Lee et al., 1996; 2020) evaluated

onion cultivars and their classification using multivariate analysis. Multivariate analysis was also used to study morphological diversity and other relationships among garlic germplasm (Lee et al., 2021). For selective breeding, knowledge of the association between the bulb yield and characteristics contributing to yield is crucial (Arya et al., 2017). Knowledge of the correlations among different characteristics and their relative contributions to the yield is useful for selecting multiple traits (Arya et al., 2017). Principal component analysis (PCA), a multivariate method, can be used to reveal important traits for genotype differentiation. Using PCA, breeders can understand the impact and associations among different traits of genotypes (Kovacic, 1994). Furthermore, cluster analysis can be used to select potential genotypes for breeding and commercial onion production. Characterizing the onion germplasm is essential for developing new cultivars using existing genetic variability. Therefore, the aim of this study was to identify the phenotypic traits of temporary genetic resources and find the best accessions for their use in the development of onion breeding programs.

Materials and Methods

Study Site and Plant Materials

This study was conducted at the AVRI research field, Muan-Gun (34° 59' 25.63 44" N, 126° 28' 54.0696" E, 31.48 meters above sea level), Jeollanam-Do, Republic of Korea from September 2020 to June 2021. The study site is characterized by a humid subtropical climate; it receives 1,000-1,800 mm of precipitation annually (Korea Meteorolgical Administration, 2021). The soil type at the site is clay, with a pH value ranging from 5.5 to 7.2 (http://soil.rda.go.kr). The seeds of 79 onions (Allium cepa L.) were obtained from the National Agrobiodiversity Center of Jeonju, Korea (Appendix 1). Plug trays containing 338 cells (26 × 13 cells; FAMWIN, Bumong Co. Ltd., Jeong-eup, Korea) were filled with a commercial growing medium (Plantworld, Nongwoobio Co. Ltd., Suwon, Korea) and 50 seeds from each germplasm were sown in September 9, 2020. Cattle manure compost (20 mg ha⁻¹) and pre-plant fertilizers (80 kg ha⁻¹ N as urea, 33.6 kg ha⁻¹ of P_2O_5 as fused phosphate, and 58 kg ha^{-1} K₂O as potassium sulphate) were applied to the plots according to the fertilizer recommendation

of the Rural Development Administration (RDA, 2010). Terbufos and fosthiazate were applied as pesticides to reduce maggot and nematode damage. The planting bed was prepared at a center-to-center distance of 1.50 m with a 1.0 m bed width and 0.20 m height. Alchlor (43.7%) and pendimethalin (31.7%) were sprayed on the bed. Subsequently, on November 11, 2020, black plastic was mulched on the bed, and an average of 25-30 seedlings of each accession were transplanted into the plot, each with a plant geometry of 20 cm \times 10 cm. We followed the recommended cultivation practices for onions outlined by the RDA.

Phenotypic Characterization

Nine quantitative traits (bolting rate, plant height, polar and equatorial bulb diameters, bulb shape index (BSI), bulb weight, degree of splitting into bulblets, bulb neck width, and bulb size) and seven qualitative traits (leaf color, foliage attitude, foliage waxiness, bulb shape at root end, base color of dry skin in bulb, bulb shape, and color of the epidermis of fleshy scales at the bulb) were selected using modified descriptors of the International Union for the Protection of New Varieties of Plants (UPOV, 2008), and reference descriptors of *Allium* spp. (IPGRI, 2001). Quantitative measurements for each trait were performed on ten random samples and averaged. Qualitative characteristics were recorded from plant and bulb observations in the field. The detailed quantitative and qualitative traits and measurement methods are provided in Appendix 2.

Statistical Analysis

Quantitative and qualitative data were subjected to descriptive statistics using SPSS Statistics (version 20.0; SPSS Inc., Chicago, IL, USA). Frequency statistics were also used to analyze 16 phenotypic traits of the 79 accessions. Pearson correlation coefficients were calculated for the nine quantitative traits, and principal components analysis (PCA) and agglomerative hierarchical cluster analysis were performed for all 16 phenotypic traits using the XLSTAT software (Addinsoft, Paris, France).

Results

Quantitative Traits

Descriptive statistics for nine quantitative traits of the 79 accessions and their variations are presented in Table 1. The full dataset for the nine quantitative traits is presented in Appendix 3. The bolting rate varied from 0.0% to 80.0%, with an average value of 7.5%. The plant height ranged from 37.9 to 91.2 cm, with an average of 68.6 cm. The average polar bulb diameter was 6.0 cm, ranging from 3.4 to 9.0 cm. The equatorial bulb diameter ranged from 0.5 to 1.4, with an average of 6.9 cm. The BSI varied from 0.5 to 1.4, with an average value of 0.9. The maximum and minimum bulb weights were 368.4 and 38.5 g, respectively, with an average of 173.2 g. The degree of splitting into bulblets ranged from 0.0% to 100%, with an average of 28.0%. The coefficient of variation ranged from 16.3% (low) for the plant height to 230.1% (high) for

Table 1. Phenotypic variation of quantitative traits in the 79 onion germplasms evaluated at Muan-Gun, Jeolla-Do, Korea, from 2020-2021

Quantitative traits	Maximum	Minimum	Mean	SD (±) ^z	CV (%) ^y
Bolting rate (%)	80.0	0.0	7.5	17.3	230.1
Plant height (cm)	92.1	37.9	68.6	11.2	16.3
Polar bulb diameter (cm)	9.0	3.4	6.0	1.4	23.2
Equatorial bulb diameter (cm)	9.5	3.7	6.9	1.5	21.5
Bulb shape index	1.4	0.5	0.9	0.2	19.3
Bulb weight (g)	368.4	38.5	173.2	87.9	50.7
Degree of splitting into bulblets (%)	100.0	0.0	28.0	39.7	141.7
Bulb neck width (3-7)	7.0	3.0	6.1	1.5	24.0
Bulb size (3-7)	7.0	3.0	4.9	1.7	33.9

^zSD, standard deviation; ^yCV; coefficient of variation.

the bolting rate, followed by the degree of splitting into bulblets (141.7%) and bulb weight (50.7%). Bulb width of neck and bulb size showed 24.0% and 33.9% variation, respectively.

The frequency distribution of the nine quantitative traits among the onion accessions is shown in Fig. 1. Among the 79 accessions, 61 did not bolt (Fig. 1A). The plant height ranging from 61.0-80.0 cm had the highest number of accessions (50; Fig. 1B). The bulb polar diameters ranging from 3.6 to 7.0 cm contained the highest number of accessions (55; Fig. 1C). The bulb equatorial diameter ranging from 5.6 to 7.0 cm had the highest number of accessions (28), followed by 22 accessions within the range of 7.1 to 8.5 cm (Fig. 1D). The BSI ranging from 0.8 to 0.9 contained the highest number of accessions (33), followed by 26 accessions within were in the range of 0.10 to 0.11 cm (Fig. 1E). The bulb weight ranging from 101.0-150.0 g had the highest number of accessions (19), followed by the range of 151.0 to 200.0 g (16 accessions; Fig. 1F). Regarding the degree of splitting into bulblets, the highest number of accessions (42) were observed for non-splitting types. The degree of splitting into bulb-lets ranged from 81.0% to 100.0% in 15 accessions (Fig. 1G) and the highest number of accessions (51) had a large bulb neck width (Fig. 1H). The highest number of accessions (29) had a small bulb size, whereas nine accessions had a large bulb size (Fig. 1I).

Qualitative Traits

The assessment of the seven qualitative characteristics of 79 accessions is presented in Appendix 4. The seven qualitative traits exhibited a wide variation among the accessions (Fig. 2). Green leaves were predominantly observed among the accessions, although they varied in color (Fig. 2A). The

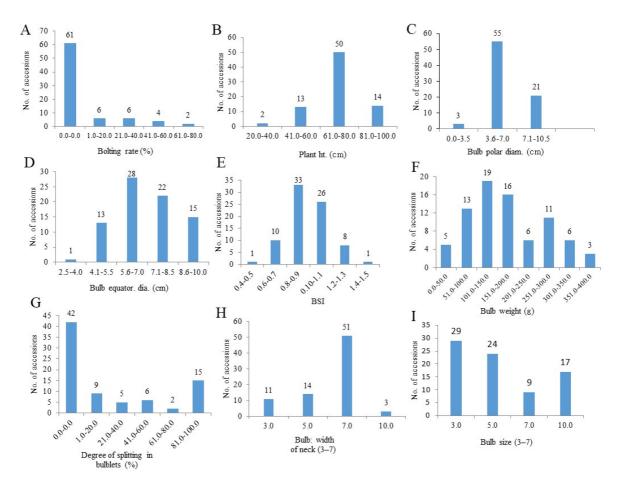


Fig. 1. Frequency distribution of nine quantitative traits among the 79 onion germplasms. A, bolting rate (%); B, plant height (Cm); C, bulb polar diameter (Cm); D, bulb equatorial diameter (Cm); E, bulb shape index (BSI); E, bulb weight (g); F, degree of splitting in bulblets (%); H, bulb neck width (3-7): 3, small; 5; medium; 7; large; 10, mix; I, bulb size (3-7): 3; small; 5; medium; 7; large; 10; mix.

foliage attitude varied from erect to semi-erect to mixed (Fig. 2B). A broad variability was observed for the foliage waxiness (Fig. 2C), bulb shape at the root end (Fig. 2D), and color of the dry skin at the base of the bulb (Fig. 2E). The circular bulb shape had the highest number of accessions, followed by the oval shape (Fig. 2F). Most accessions for epidermal flesh scales were white, followed by red (Fig. 2G).

Correlation Among Quantitative Traits

Pearson correlation coefficients for the nine quantitative traits are presented in Table 2. Plant height was significantly (p < 0.01) positively correlated with the bulb polar diameter, bulb equatorial diameter, and bulb weight. Bulb polar diameter was significantly positively correlated with bulb equatorial diameter, BSI, and bulb weight, but negatively correlated with degree of splitting into bulblets (p < 0.01). Bulb equatorial

diameter was significantly positively correlated with bulb weight and bulb size (both p < 0.01) but negatively correlated with degree of splitting into bulblets (p < 0.01). The bulb weight was significantly negatively correlated with the degree of splitting into bulblets, but significantly positively correlated with the bulb size (both p < 0.01).

Principal Component Analysis (PCA)

PCA was used to calculate the correlations among the 16 phenotypic traits of the 79 onion accessions. PCA showed that the first six components (PC1 to PC6) accounted for almost three-quarters of the total variation (Table 3). PC1 accounted for approximately one-quarter of the phenotypic variance, with bulb weight, bulb equatorial diameter, polar diameter, and plant height (0.34) being the main contributors. Bulb color of the epidermal fleshy scales and the color of the

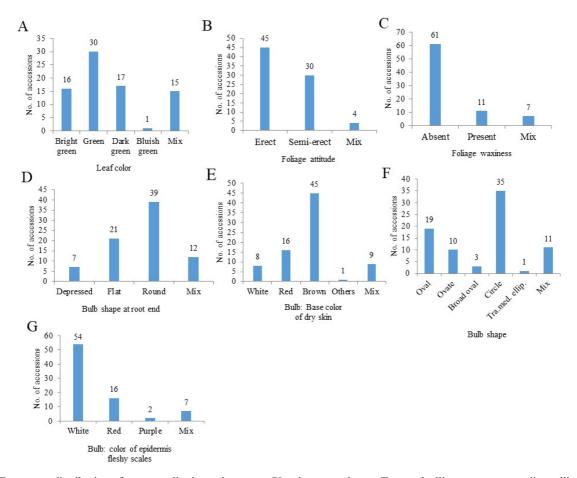


Fig. 2. Frequency distribution of seven qualitative traits among 79 onion germplasms. Tra. med. ellip., transverse medium elliptic; A, leaf color; B, foliage attitude; C, foliage waxiness; D, bulb shape at root end; E, bulb: base color of dry skin; F, bulb shape; G, bulb: color of epidermis fleshy scales.

Traits	BR	PHT	BPD	BED	BSI	BWT	DSB	BNW	BSZ
BR	1.0	-0.23*	-0.22*	-0.08	-0.18	-0.16	-0.10	0.04	-0.19
PHT		1.0	0.46**	0.49**	-0.01	0.48**	-0.15	0.39**	0.31**
BPD			1.0	0.61**	0.48**	0.76**	-0.43**	0.08	0.27*
BED				1.0	-0.37*	0.92**	-0.52**	0.01	0.51**
BSI					1.0	-0.12	0.10	0.11	-0.24*
BWT						1.0	-0.50**	0.01	0.50**
DSB							1.0	0.05	-0.29**
BNW								1.0	0.12
BSZ									1.0

Table 2. Correlation coefficients among the nine quantitative traits of the 79 onion germplasms evaluated at Muan-Gun, Jeolla-Do,
Korea, from 2020-2021

*p < 0.05; **p < 0.01. BR, bolting rate (%); PHT, plant height (cm); BPD, bulb polar diameter (cm); BED, bulb equatorial diameter (cm); BSI, bulb shape index; BWT, bulb weight (g): DSB, degree of splitting bulblets (%); BNW, bulb: neck width; (3-7); BSZ, bulb size (3-7).

Table 3. Eigenvector and eigenvalues generated by PCA applied to the 16 morphological characteristics of the 79 onion germplasms
evaluated at Muan-Gun, Jeolla-Do, Korea, from 2020-2021

		Eigenvectors					
Morphological characters	PC1	PC2	PC3	PC4	PC5	PC6	
Bolting rate	-0.08	0.05	-0.38	0.42	0.13	-0.26	
Plant height	0.34	0.25	0.11	-0.08	0.15	0.30	
Bulb polar diameter	0.37	-0.10	0.40	0.12	0.11	-0.18	
Bulb equatorial diameter	0.44	-0.15	-0.14	-0.09	0.20	-0.07	
BSI	-0.05	0.07	0.64	0.22	-0.09	-0.11	
Bulb weight	0.45	-0.16	0.02	-0.06	0.20	-0.13	
Degree of splitting into bulblets	-0.31	0.22	0.10	-0.10	0.23	0.22	
Bulb: width of neck	0.08	0.20	0.06	0.36	0.29	0.62	
Bulb size	0.30	-0.12	-0.15	-0.13	-0.01	0.28	
Leaf color	0.13	0.22	-0.16	0.31	-0.32	0.24	
Foliage attitude	0.06	0.18	-0.08	-0.56	-0.05	-0.01	
Foliage waxiness	0.13	0.17	-0.33	0.33	0.22	-0.25	
Bulb shape at root end	0.20	-0.11	0.17	0.26	-0.46	-0.05	
Bulb: base color of dry skin	0.15	0.56	0.07	-0.05	-0.03	-0.22	
Bulb shape	0.19	0.12	-0.21	-0.05	-0.60	0.13	
Bulb: color of epidermis of fleshy scales	0.06	0.57	0.02	-0.05	0.03	-0.29	
Eigenvalue	3.90	2.21	1.86	1.41	1.13	1.10	
% Variance	24.39	13.85	11.63	8.84	7.07	6.87	
% Total variation explained	24.39	38.24	49.87	58.71	65.78	72.65	

bulb base dry skin, contributed to phenotypic variance in PC2 (Appendix 5). The third PC explained just over 11.0% of the total variation and was mainly associated with the BSI, bulb

polar diameter, bolting rate, and foliage waxiness. Similarly, in PC4, the foliage attitude, bolting rate bulb neck width, foliage waxiness, and leaf color contributed close to 9.0% of the

phenotypic variance. PC5 contributed to 7.0% of the phenotypic variance and was associated with the bulb shape, bulb shape at root end, and leaf color. PC6 accounted for 7.0% of the total variation and was associated with bulb neck width and plant height.

Cluster Analysis

A dendrogram of genetic distances based on morphological characteristics was constructed using agglomerative hierarchical clustering. Overall, three clusters were obtained from the 79 onion accessions. Clusters 1, 2, and 3 contain 50, 20, and 9 accessions, respectively (Fig. 3). Cluster 1 was further separated into three subgroups and clusters 2 and 3 each separated into two subgroups. The means and standard deviations of the quantitative traits in the three clusters are presented in Table 4. Most accessions were grouped in cluster 1, which showed a lower plant height, bulb polar diameter, bulb equatorial diameter, and bulb weight than that of clusters 2 and 3. The bulb polar diameter, bulb equatorial diameter, and bulb weight were higher in cluster 2 than in clusters 1 and 3. Accessions in cluster 2 showed lower bolting rate than those in clusters 1 and 3. The degree of splitting into bulblets was higher in cluster 1 than in clusters 2 and 3. Clusters 2 and 3 did not contain small bulb neck widths. The bulb size of cluster 1 accessions consisted of small, medium, large, and mixed types, whereas cluster 2 accessions contained medium and large onions, and cluster 3 accessions had small-to-medium bulb sizes.

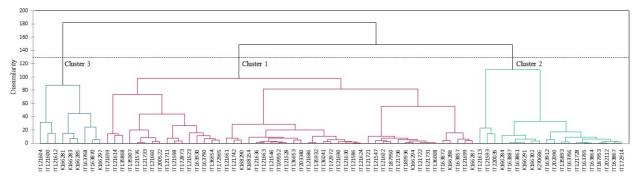


Fig. 3. Dendrogram showing the three main clusters identified using dissimilarity analysis. The dendrogram includes all 79 onion accessions and 16 descriptors used for Ward's cluster analysis showing genetic relationship (scale: Euclidean distance).

T	Cluste	r 1	Cluste	er 2	Cluster 3	
Traits	Mean	SD ^z	Mean	SD	Mean	SD
n ^v	50		20)	9	
Bolting rate (%)	7.4	17.0	3.8	11.3	16.7	26.9
Plant height (cm)	64.7	10.2	74.8	7.6	77.3	13.5
Polar bulb diameter (cm)	5.6	1.3	7.1	0.9	6.1	1.4
Equatorial bulb diameter (cm)	6.4	1.4	8.4	0.6	6.9	1.5
BSI	0.9	0.2	0.9	0.1	0.9	0.2
Bulb weight (g)	135.5	67.3	268.1	52.6	171.4	97.7
Degree of splitting into bulblets (%)	38.8	43.3	0.8	3.4	28.9	35.8
Bulb neck width (3-7)	3, 5, 7	-	5, 7, 10	-	5, 7	-
Bulb size (3-7)	3, 5, 7, 10	-	5, 7, 10	-	3, 5, 10	-

Table 4. Means and standard deviations of quantitative traits used for the classification of three onion clusters evaluated at Muan-Gun, Jeolla-Do, Korea, from 2020-2021

^zSD, standard deviation; ^yn, number of accessions; BSI, bulb shape index; Bulb: neck width (3-7); 3, small; 5, medium; 7, large; 10, mix; Bulb size (3-7), 3, small; 5; medium; 7, large; 10, mix; -, absent.

A summary of the qualitative characteristics of the three clusters is given in Fig. 4. Cluster 1 contained the highest number of accessions with green leaf color, whereas clusters 2 and 3 contained the highest number of accessions with mixed leaf color (Fig. 4A). Clusters 1 had the most accessions with erect and semi-erect foliage attitude, followed by Cluster 2 (Fig. 4B). Clusters 1 and 2 had the highest number of accessions that contained no foliage waxiness (Fig. 4C). Clusters 1 and 2 contained the highest number of accessions with round bulb shapes at the root end (Fig. 4D). Similarly, the color of the bulb base dry skin was predominantly brown in clusters 1 and 2, but cluster 3 contained the highest number of accessions with a mixed color (Fig. 4E). Clusters 1 and 2 had the highest number of accessions with circular bulb shapes (Fig. 4F). The white epidermis of fleshy scales was predominant in clusters 1 and 2 accessions, but a mixed color of the epidermis of fleshy scales was predominant in cluster 3 accessions (Fig. 4G).

Discussion

In this study, marked phenotypic trait variations were identified among the germplasms, which could provide accessions for use in the development of onion breeding programs. Variations in phenotypic traits are of paramount importance in onion breeding. Owing to the high variability in the bolting rate, degree of splitting into bulblets, bulb weight, bulb polar and equatorial diameters in the onion germplasms of this study, the selection of superior genotypes based on these traits could be effective. Arya *et al.* (2017) also reported variations in the plant height, polar and equatorial bulb diameters, BSI, and bulb weight in 26 onion germplasms.

Bolting is an undesirable trait in the production of onion bulbs. In our study, the bolting rate exhibited a high degree of

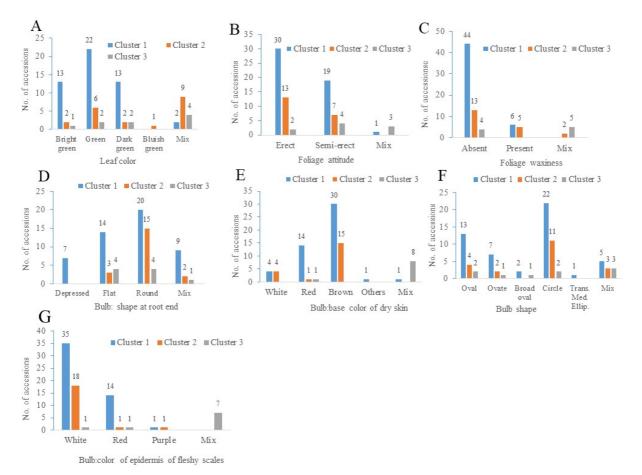


Fig. 4. Frequency distribution of seven qualitative traits in three clusters of the 79 onion germplasms. A, leaf color; B, foliage attitude; C, foliage waxiness; D, bulb shape at root end; E, bulb: base color of dry skin; F, bulb shape; G, bulb: color of epidermis fleshy scales.

variation, followed by the degree of splitting into bulblets, and then bulb weight. Monpara *et al.* (2005) also reported a high variation (133.9%) in the bolting traits when evaluating 106 onion germplasms. Hanci and Gokce (2016) reported a 68.1% and 61.6% variation in the degree of splitting into bulblets and bulb weight, respectively. The high coefficients of variation obtained for the bolting rate, degree of splitting into bulblets, and bulb weight in this study are similar to the findings of previous studies (Ghetia and Singh, 2000; Hanci and Gokce, 2016; Monpara *et al.*, 2005). Genotype selection is a well-known approach for avoiding bolting traits. Selecting genotypes that are resistant to bolting is a major breeding objective for onions (Hu *et al.*, 2003).

Bulb shape, weight, and size are commercially important traits. The results of this study showed a wide variation in these traits. The bulb shape also affects consumer preferences and varies across different markets. Notable differences in the bulb shape among onion cultivars, which are important to consumers, have been reported by Grant and Carter (1991). In this study, marked variation was observed in the base color of dry skin among onion accessions. Phenotypic diversity in the onion germplasm for the base color of dry skin has also been reported (Azimi et al., 2020; Gvozdanović et al., 2013). In this study, circular bulb- shaped accessions were identified, which might be important for onion breeding. Azimi et al. (2020) also reported differences in the bulb shape. Plant morphology can be used as a genetic marker to characterize onion germplasms (Ahmed et al., 2013). Morphological traits are useful for the protection, registration, and patenting of varieties. Accordingly, the variation in qualitative traits observed in the study could be used to identify accessions. Phenotypic traits are also useful for characterizing other crops such as lettuce germplasm (Sung et al., 2016).

The positive association of plant height, bulb polar diameter, bulb equatorial diameter with bulb weight suggests that these traits are yield determining factors and could be directly selected. Manjunathagowda (2022) also reported a strong positive correlation among bulb weight, plant height, and bulb polar and equatorial diameters which concurs with our findings. Other studies have found bulb weight positively and significantly (p < 0.01) correlated with the equatorial and polar bulb diameters (Dhotre *et al.*, 2010; Patil *et al.*, 1990).

Conversely, bulb weight negatively correlated with the degree of splitting into bulblets, which indicated that selecting genotypes with a high-degree of splitting results in a low bulb weight. Raghuwanshi et al. (2016) reported that plant height is a yield-determining trait. In the present study, we found that the quantitative traits contribute more to diversity than qualitative traits. Hanci and Gokce (2015) reported that the nine PCs contributed to 71.84% of the variability (high eigenvalues > 1), and that the bulb weight and pseudostem diameter positively contributed to PC1. However, in this study, six PCs contributed to most of the variability (high eigenvalues > 1). The bulb weight, bulb equatorial and polar diameters, and plant height positively contributed to PC1. Dangi et al. (2018) reported that five principal components PC1-PC5 contributed to 78.5% of the total variation in short-day onion genotypes and they identified that leaf diameter, bulb diameter, and number of leaves are the major contributors to PC1. The results of our study show that bulb weight, bulb equatorial and polar diameters, plant height, degree of splitting into bulblets, and bulb size are the most useful traits for PC1, followed by bulb color of the epidermal fleshy scales and bulb base color of the dry skin (PC2). Mousavizadeh et al. (2006) stated that the axes of the first three PCs had 83.42% of the total phenotypic diversity in Iranian onion landraces and that bulb dry weight, diameter, and bulb weight were the major contributors to PC1. Arya et al. (2017) observed that three PCs accounted for 95.61% of the variation. The high positive loading related to the bulb weight in PC1 in this study agrees with the results of Arya et al. (2017), where the major contributing traits were the bulb weight, bulb equatorial and polar diameters, and plant height in the positive direction, and the degree of splitting into bulblets (in the negative direction). In contrast, the traits contributing the least were BSI, foliage attitude, bulb color of the epidermal fleshy scales, bulb neck width and bolting rate. Most accessions were clustered together, indicating morphological similarities, whereas a few accessions showed diversity. Differences in traits, such as the bolting rate, degree of splitting into bulblets, bulb weight, bulb size, and color of the epidermal fleshy scales might have created the variations in these accessions. Based on morphological traits, Lee et al. (1996) classified 60 onion varieties into four groups, most of which were not associated with their geographical origins. This study classified 79 onion germplasms into three clusters based on 16 morphological traits. Manjunathagowda (2022) also reported five clusters from 62 Indian onion accessions, and Arya *et al.* (2017) classified 26 onion accessions into four clusters. Prior studies have reported that clustering does not signify geographical origin, which is consistent with our findings.

In this study, marked phenotypic trait variations were identified among the 79 onion germplasms. These variations could provide information to breeders and gene bank curators. The phenotypic traits, including a low bolting rate, low degree of splitting into bulblets, and high bulb weight, along with circular bulb-shaped onion accessions could be important for improving onion breeding. The significant correlation between plant and bulb traits in onion accessions could improve their genetics. The strong positive values in the principal components can aid in the precise selection of onion accessions. In particular, cluster 2 onion accessions can be effectively utilized in variety improvement. The history and collection area for each accession may help to form the clusters, and examine their relationship with morphological characteristics. However, the present study reveals little explanation for the relationships between closely related or geographically distant accessions. Therefore, exploring the geographical origin of onion germplasms using molecular characterization is recommended for further research.

Acknowledgements

This work was carried out with the support of "Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01423004)", Rural Development Administration, Republic of Korea.

Conflicts of Interest

The authors declare that they have no conflict of interest.

References

Ahmed, N., S.H. Khan, B. Afroza, K. Hussain, S. Qadri and G. Nazir. 2013. Morphological characterization in onion (*Allium*

cepa L.) for preparation and implementation of plant variety protection (PVP) legislation and distinctness, uniformity and stability (DUS) testing under temperate conditions of Kashmir. Afr. J. Agric. Res. 8(14):1270-1276.

- Akter, M.S., A. Biswas, S.S. Siddique, S. Hossain and N.A. Ivy.2015. Estimation of genetic diversity in onion (*Allium cepa* L.). The Agriculturist 13(1):26-34.
- Arya, J.S., N. Singh, P.S. Arya and A. Kant. 2017. Morphological variations and relationship among onion germplasm for quantitative and qualitative traits at trans-Himalayan Ladakh, India. Aust. J. Crop. Sci. 11(03):329-337.
- Asare, P.A., I.K.A. Galyuon, J.K. Sarfo and J.P. Tetteh. 2011. Morphological and molecular based diversity studies of some cassava (*Manihot esculenta* Crantz) germplasm in Ghana. Afr. J. Biotechnol. 10:13900-13908.
- Azimi, M.H., G. Beşirli, İ. Sönmez, R. Daş, E. Karabulut, T. Tuna, M. Şimşek, B. Albayrak, Z, Polat, N.Z.Gökçe Öztürk, A.F. Gökçe, A.R. Alan, F. Çelebi Toprak, V. Aras, M. Ünlü and O. Gündüz 2020. Morphological characterization of onion (*Allium cepa* L.) germplasm collected from East and Southern East Anatolian Regions, 3rd International Agricultural Congress, 5~9 March, Türkey. p. 13.
- Bagci, A., A. Balkaya, O. Karaagac and D. Kandemir. 2022. Phenotypic diversity of red and white onion genetic resources collected from different countries. Ekin J. 8(2):86-100.
- Bagci, A., O. Karaagac and A. Balkaya. 2021. Onion generation progression and seed production in breeding techniques to speed up the process. J. Inst. Sci. Technol. 11:3438-3446.
- Benkeblia, N. 2005. Free-radical scavenging capacity and antioxidant properties of some selected onion (*Allium cepa* L.) and garlic (*Allium sativum* L.) extracts. Braz. Arch. Biol. Technol. 48:753-759.
- Castell, V.R. and C.M. Portas. 1994. Alliacea production systems in the Iberian Peninsula: facts and figures of potential interest for a worldwide R&D network. Acta Hortic. 358:43-47.
- Cross, R.J. 1998. Global genetic resources of vegetables. Plant Varieties and Seeds 11:39-60.
- Dangi, R., A. Kumar and A. Khar. 2018. Genetic variability, heritability, and diversity analysis studies in short day tropical onion (*Allium cepa* L.). Ind. J. Agric. Sci. 88:948-957.
- Dhotre, M., T.B. Allolli, S.I. Athani and L.C. Halemani. 2010. Genetic variability, character association and path analysis studies in Kharif onion (*Allium cepa* var. *cepa* L.). J. Asian Hortic. 5(1):143-146.
- FAOSTAT. 2022. Onion production, area and productivity.

database [Internet], FAO [classic version]. [Accessed 2022 Dec 20]. Available from http://faostat.fao.org/site/339/default. aspx

- Ghetia, J.M. and S.P. Singh. 2000. Genetic variability, correlation and path analysis in onion (*Allium cepa* L.). National Horticultural Research and Development Foundation. Proceedings of the National Symposium on Onion and Garlic Production and Post-Harvest Management Challenges and Strategies, Nasik, November 19-21, 2000. pp.51-54.
- Gokce, A.F. 2022. Onion breeding, Vegetable breeding, vol 4. Alloideae (Onionaceae). *In* Abak, K., A. Balkaya, S.S. Ellialtioglu, E. Duzyaman and G. Kitapligi (eds.), Anadolu University Press, Eskischir, Turkey. pp. 21-115. (in Turkish)
- Grant, D.G. and B.V. Carter. 1991. A study of bulb shape in onions (*Allium cepa* L.). Agronomy Society of New Zealand 21:19-22.
- Gvozdanović, V.J., M. Vasić, J. Červenski, A. Petrović and D. Moravčević. 2013. Phenotypic diversity of basic characteristics of genotypes from the Serbia onion collection. Genetika 45(1):101-108.
- Hanci, F. and A. Gokce. 2016. Molecular characterization of Turkish onion germplasm using SSR markers. Czech J. Genet Plant Breed. 52 (2):71-76.
- Hanci, F. and A.F. Gokce. 2015. Genetic diversity evaluations in Turkish onion (*Allium cepa* L.) genotypes: principal component analysis (PCA) for breeding strategies. In VII International Symposium on edible Alliaceae 1143, Niğde, Turkey. pp. 227-234.
- Hu, W., X. Hou, J.J. Wang and Y. Chen. 2003. Effects of different sowing dates and post-winter field planting on growth and yield onion (*Allium cepa* L.). Acta Agric. Shanghai 19:57-60.
- IPGRI, 2001. Descriptors of *Allium (Allium* spp.). International Plant Genetic Resources Institute, Rome, Italy; European Cooperative Programme for Crop Genetic Resources Networks (ECP/GR), Asian Vegetable Research and Development Center, Taiwan, p. 18.
- Korea Agro-Fisheries and Food Trade Corporation. 2022. National Statistics. Cultivated area of garlic and onions in 2022. Retrieved from http://kostat.go.kr/portal/eng/pressRelease/ 2/1/index.board
- Korea Meteorolgical Administration (KMA). 2021. Rerieved from www.kma.go.kr/eng/index.jsp
- Korea Seed Association. 2022. Import status of vegetable seed in 2022. Retrieved from http://www.kosaeed.or.kr/
- Kovacic, Z. 1994. Multivariate Analysis. Faculty of Economics.

University of Belgrade, Serbia, p. 293.

- Lee, E.T., D.H. Chung, B. S. Kwon, B.C. Jeong, J.J. Hwang and J.T. Lim. 1996. Varietal classification by multivariate analysis in onion (*Allium cepa* L.). J. Korean Soc. Hortic. Sci. 37:37-41.
- Lee, J.S., Y.U. Park, J.H. Jeong, Y.H. Kwon, W.B. Chang and H.D. Lee. 2021. Classification of garlic germplasms based on agronomic characteristics and multivariate analysis. Korean J. Plant Res. 34(1):79-88.
- Lee, J.T., J.S. Moon, J. Y. Kim, G.O. Park, J.H. Kwon, I.J. Ha, Y. S. Kwon and Y.H. Chang. 2020. Evaluation of onion cultivars as affected by bulb maturity and bulb characteristics of intermediate-day yellow onions in South Korea. J. Hortic. Sci. Biotechnol. 95(5):645-660.
- Mallor Gimenez, C., M. Carravedo Fantova, G. Estopanan Munoz and F. Mallor Gimenez. 2011. Characterization of genetic resources of onion (*Allium cepa* L.) from the Spanish secondary centre of diversity. Span. J. Agric. Res. 9(1):144-145.
- Mallor, C., M.S. Arnedo-Andres and A. Garces-Claver. 2014. Assessing the genetic diversity of Spanish Allium cepa landraces for onion breeding using microsatellite markers. Sci. Hortic. 170:24-31.
- Manjunathagowda, D.C. 2022. Genetic enhancement of onion germplasm through population improvement. Plant Physiol. Rep. 27(1):73-80.
- Manjunathagowda, D.C. and R. Selvakumar. 2021. Markerassisted selection of Ms locus responsible for male fertility restoration in onion (*Allium cepa* L.). Genet. Resour. Crop Evol. 1-5.
- McCallum, J. 2007. Genome mapping and molecular breeding in plants onions. *In* Kole, C. (ed.), Vegetables, Vol. 5, Springer, Berlin, Germany. p. 331-347.
- McCallum, J., S. Thomson, M. Pither-Joyce, F. Kenel, A. Clarke and M.J. Havey. 2008. Genetic diversity analysis and singlenucleotide polymorphism marker development in cultivated bulb onion based on expressed sequence tag-simple sequence repeat markers. J. Am. Soc. Hortic. Sci. 133:810-818.
- Monpara, B., M. Chhatrola, K. Golani and M. Vaddoria. 2005. Evaluation of onion germplasm: Varaibility and trait relationship studies. Natnl. J. Pl. Improv. 7(1):11-14.
- Mousavizadeh, S.A., M. Moghadam, M. Tourchi, S.A. Mohammadi and S. Masiha. 2006. Morphological and agronomic diversity in Iranian onion landraces. Iran J. Agric. Sci. 37(1): 193-202.
- Ojuederie, O.B., M.O. Balogun, I. Fawole, D.O. Igwe and M.O.

Olowolafe. 2014. Assessment of the genetic diversity of African yam bean (*Sphenostylis stenocarpa* Hochst ex. A Rich Hams) accessions using amplified fragment length polymorphism (AFLP) markers. Afr. J. Biotechnol. 13:1850-1858.

- Patil, A.H., V.N. Dod, P.B. Kale and L.V. Kulwal. 1990. Performance of onion varieties with reference to seed production. Punjab Krishi Vidyapeeth Research Journal 14(2): 123-126.
- Raghuwanshi, O.S., P.K. Jain, S.K. Sengupta, A.S. Dangi, N.R. Verma and P. Sunil. 2016. Correlation and path analysis study in diverse onion (*Allium cepa* L.) genotypes. J. Asian Hortic. 11(1):19-24.
- RDA. 2010. Rural Development Administration. The standard of fertilizer application on crop species. National Institute of Agricultural Science, RDA, Suwon, Republic of Korea. pp. 100-101.
- Smith, J.S.C. and O.S. Smith. 1989. The description and assessment of distances between inbred lines of maize: the utility of morphological, biochemical and genetic descriptors and a scheme for the testing of distinctiveness between inbred

lines. Maydica 34:151-161.

- Sung, J.S., O.S. Hur, K.Y. Ryu, H.J. Baek, S. Choi, S.G. Kim, B.P. Luitel, H.C. Ko, J.G. Gwak and J. H. Rhee. 2016. Variation in phenotypic characteristics and contents of sesquiterpene lactones in lettuce (*Lactuca sativa* L.) germplasm. Korean J. Plant Res. 29:679-689.
- Sunil, N., V. Kumar, M.T. Reddy and V. Kamala. 2014. Phenotypic diversity and genetic variation within a collection of onion (*Allium cepa* L.) germplasm from Peninsular India. Electron. J. Plant Breed. 5(4):743-751
- UPOV. 2008. International Union for the Protection of New Varieties of Plants. Onion, Echalion, Shallot; Grey Shallot. Guidelines for the conduct of tests for distinctness, uniformity and stability. https://www.upov.int/edocs/tgdocs/en/tg046.pdf
- Yuguda, U.A., M. Ismaila, D.A. Zhigila and E. Karu. 2017. Phenotypic evaluation of eight onion (*Allium cepa* L.) cultivars grown in northern Nigeria. Bima J. Sci. Technol. 1(02): 12-16.

(Received 21 February 2023; Revised 12 April 2023; Accepted 14 April 2023)

S.N.	Stock No. of genebank	Code	S.N.	Stock No. of genebank	Code
1	IT109552	NPL-BC	41	IT136654	Kathmandu Local
2	IT121 528	PI164350	42	IT163765	[(A/10010-1)-2]-5
3	IT121546	PI181929	43	IT163766	[(A/L 08063-3-4-1-2)-2]-5
4	IT121547	PI182135	44	IT163768	[(ABL 04039/L 18018-2)-7]-1
5	IT121576	PI236025	45	IT163790	L01017-3-7-1
6	IT121586	PI256043	46	IT163857	[(A/AL 04057-3)-1-M ¹]-1
7	IT121593	PI262898	47	IT163861	[(A/L 03015-1-2)-6-M ¹]-1
8	IT121598	PI262920	48	IT163864	[(A/L 05027-10)-9-M ³]-6
9	IT121600	PI262922	49	IT163867	[(A/L 05027-10)-9/(ABL 04039/L 05027-10)-6]-2
10	IT121602	PI262926	50	IT163870	[(A/10010-1)-3-M5]-3
11	IT121604	PI262928	51	IT163872	[(A/10010-1)-6]-2
12	IT121612	PI264314	52	IT163887	23020-1-M7-13
13	IT121613	PI264315	53	IT163912	32010-1-1-3
14	IT121614	PI264316	54	IT163930	[(A/L 04029-2)-1-1]-1
15	IT121623	PI264326	55	IT172873	Bhusan Hort. Expt. Stat.1991-5725
16	IT121624	PI264328	56	IT172914	L13017-13-1-M-1
17	IT121630	PI264627	57	IT172965	(A01012/19027-3)-2W-29-2-1
18	IT121636	PI268359	58	IT172972	L13017-13-1-M-1
19	IT121659	PI288906	59	IT187950	Colossal PVP
20	IT121660	PI289638	60	IT187953	Granoble
21	IT121661	PI289639	61	IT189936	El'dorado
22	IT121663	PI344251	62	IT200522	Muna
23	IT121686	PI357220	63	IT202090	Elad [H]
24	IT121690	PI368355	64	IT202112	USA Early supreme
25	IT121699	PI360336	65	IT203340	Local-Bukhara
26	IT121711	PI420202	66	IT220035	65
27	IT121721	PI433320	67	K166281	Ostryi Mestnyi
28	IT121722	PI433322	68	K166283	Local
29	IT121728	PI433333	69	K166284	Rivato Orig. R.S.
30	IT121731	PI433338	70	K166285	Kyustendilski
31	IT121733	PI433340	71	K166287	Eterna
32	IT121736	PI433343	72	K166288	Ontario
33	IT121742	PI433409	73	K166291	Rouge
34	IT135868	Sweet Spanish Cilo No 6	74	K166294	Record-2
35	IT135893	Early White Grano	75	K166297	Sapporoki-Hokkaido
36	IT135907	Imperial 48	76	K166302	Chieftein
37	IT135932	Sweet Spanish Valencia	77	K168154	sung 98
38	IT136008	Walla Walla Sweet	78	K168290	A 7 E 0421
39	IT136041	Red Grano	79	K270686	K243480-2
40	IT136653	Red Creole			

Appendix 1. Onion germplasm used for the phenotypic characterization at Muan-Gun, Jeolla-Do, Korea, from 2020-2021

Characters	When to measure	How to measure/scale
Quantitative characteristics		
Bolting rate	Vegetative stage on fully developed plants	Visual observation at field, %
Plant height	Vegetative stage at mature plants	From soil level to the highest green leaf, cm
Bulb polar diameter	Harvesting stage	Mature bulbs from top to root end portion, cm
Bulb equatorial diameter	Harvesting stage	Mature bulbs at middle portion, cm
Bulb shape index	Harvesting stage	Bulb polar diameter divided by bulb equatorial diameter
Bulb weight	Harvesting stage	Using digital electronic balance, g
Degree of splitting into bulblets	Harvesting stage	Visual observation on bulbs, %
Width of bulb neck	Harvesting stage	3 = small, $5 = $ medium, $7 = $ large, $10 = $ mix
Bulb size	Harvesting stage	3 = small, $5 = $ medium, $7 = $ large, $10 = $ mix
Qualitative characteristics		
Leaf color	Vegetative stage	1 = bright green, $2 =$ green, $3 =$ dark green, 4 = bluish green, $5 =$ others, $10 =$ mix
Foliage attitude	Vegetative stage	1 = erect, 9 = semi-erect, 10 = mix
Foliage waxiness	Vegetative stage	1 = absent, 9 = present, 10 = mix
Bulb shape at root end	Harvesting stage	3 = depressed, $5 =$ flat, $7 =$ round, $10 =$ mix
Bulb: base color of dry skin	Harvesting stage	1 = white, $2 =$ yellow, $3 =$ red, $4 =$ brown, 5 = others, $10 =$ mix
Bulb shape	Harvesting stage	 1= oval, 2 = ovate (elongated oval), 3 = broad oval, 4 = circle, 5 = broad ovate, 6 = broad obovate, 7 = rhombic, 8 = transverse medium elliptic, 9 = transverse narrow elliptic, 10 = others, and 11 = min
Bulb: color of epidermis of flesh scales	Harvesting stage	1= white, $2 = \text{red}$, $3 = \text{purple}$, $4 = \text{other}$, and $10 = \text{mix}$

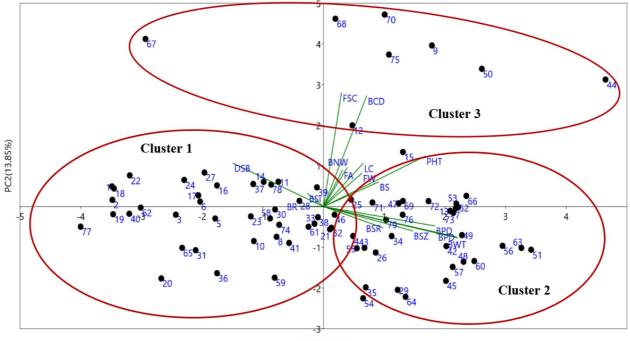
Appendix 2. Quantitative and qualitative characteristics used for the phenotypic evaluation of onion germplasm at Muan-Gun, Jeolla-Do, Korea, from 2020-2021

S.N.	Stock No. of genebank	Bolting rate (%)	Plant ht. (cm)	Bulb polar dia.(cm)	Bulb equatorial dia. (cm)	Bulb shape index (BSI)	Bulb wt. (g)	Degree of splitting into bulblets (%)	Bulb width of neck (3-7)	Bulb size (3-7)
					Clus	ter 1				
1	IT109552	20.0	53.2	3.6	4.6	0.8	60.4	100.0	3	3
2	IT121528	0.0	53.0	4.1	4.8	0.9	65.0	100.0	7	3
3	IT121546	0.0	58.4	4.9	5.4	0.9	70.9	60.0	7	3
4	IT121547	0.0	73.4	8.5	6.9	1.2	197.7	0.0	7	3
5	IT121576	0.0	62.9	4.5	5.4	0.8	63.7	0.0	7	3
6	IT121586	0.0	68.0	5.1	5.5	0.9	137.0	100.0	7	7
8	IT121598	50.0	64.2	5.3	6.9	0.8	117.6	5.0	7	10
10	IT121602	0.0	54.4	6.6	5.7	1.2	120.0	0.0	7	5
14	IT121614	0.0	69.5	5.6	6.2	0.9	120.8	100.0	7	10
15	IT121623	0.0	84.0	4.5	7.6	0.6	174.8	0.0	7	10
16	IT121624	0.0	73.0	5.3	6.2	0.9	134.0	100.0	7	5
17	IT121630	0.0	61.0	5.5	6.1	0.9	135.0	100.0	7	5
18	IT121636	0.0	58.4	4.1	4.4	0.9	50.7	100.0	7	3
19	IT121659	0.0	39.0	3.5	4.0	0.9	44.5	0.0	7	3
20	IT121660	35.0	50.0	4.9	5.2	0.9	70.0	0.0	3	3
21	IT121661	25.0	59.3	5.0	7.6	0.7	184.0	30.0	7	5
22	IT121663	0.0	65.0	4.2	4.1	1.0	48.0	100.0	7	3
23	IT121686	0.0	70.6	4.0	7.7	0.5	133.0	50.0	7	5
24	IT121690	0.0	79.5	4.6	5.3	0.9	75.0	100.0	7	3
25	IT121699	0.0	74.4	5.6	6.5	0.9	143.3	30.0	7	10
26	IT121711	50.0	66.2	6.5	9.1	0.7	275.0	0.0	7	5
27	IT121721	0.0	72.0	6.5	4.8	1.4	87.0	100.0	7	3
28	IT121722	0.0	73.7	7.3	6.3	1.2	146.5	40.0	7	3
30	IT121731	0.0	64.2	7.0	5.8	1.2	153.5	50.0	7	5
31	IT121733	0.0	64.8	3.9	5.8	0.7	76.0	0.0	3	3
32	IT121736	0.0	67.0	6.7	5.8	1.2	145.5	0.0	7	10
33	IT121742	0.0	76.7	6.5	6.8	0.9	177.3	80.0	7	5
34	IT135868	0.0	63.3	6.8	7.7	0.9	206.3	0.0	7	5
36	IT135907	0.0	50.0	4.7	6.6	0.7	106.0	0.0	3	3
37	IT135932	0.0	66.0	4.0	8.0	0.5	70.0	100.0	7	5
38	IT136008	0.0	69.0	7.8	6.3	1.2	164.0	0.0	7	3
39	IT136041	0.0	70.0	5.8	7.9	0.7	211.5	100.0	7	5
40	IT136653	40.0	62.1	4.5	5.8	0.8	91.2	100.0	3	3
41	IT136654	0.0	60.5	5.2	6.9	0.7	135.6	30.0	3	10
45	IT163790	0.0	71.0	7.1	8.4	0.8	266.3	5.0	3	10
46	IT163857	0.0	67.7	6.2	6.9	0.9	159.1	0.0	5	3
51	IT163872	0.0	81.6	7.6	8.9	0.9	306.9	5.0	7	10
54	IT163930	0.0	37.8	5.1	8.8	0.6	237.6	0.0	3	10
55	IT172873	70.0	64.7	6.9	7.3	0.9	183.9	0.0	7	10
57	IT172965	0.0	70.8	6.3	9.2	0.7	306.1	0.0	3	10
58	IT172972	0.0	63.0	6.2	7.1	0.9	158.0	50.0	7	3
59	IT187950	0.0	48.1	7.9	6.8	1.2	179.4	0.0	3	3
61	IT189936	0.0	69.6	6.6	6.5	1.0	156.0	20.0	7	5
62	IT200522	50.0	55.1	3.5	4.4	0.8	38.5	0.0	5	3
65	IT203340	25.0	61.6	4.6	5.4	0.9	68.0	0.0	7	3

Appendix 3. Plant quantitative traits measured on three clusters of the 79 onion accessions

S.N.	Stock No. of genebank	Bolting rate (%)	Plant ht. (cm)	Bulb polar dia. (cm)	Bulb equatorial dia. (cm)	Bulb shape index (BSI)	Bulb wt. (g)	Degree of splitting into bulblets (%)	Bulb width of neck (3-7)	Bulb size (3-7)
					Clus	ter 1				
71	K166287	0.0	68.2	5.9	6.2	0.9	124.8	5.0	7	10
72	K166288	0.0	84.5	6.5	6.5	1.0	144.9	10.0	7	10
74	K166294	0.0	69.8	6.2	6.4	0.9	115.6	0.0	7	3
77	K168154	5.0	50.0	3.4	3.7	0.9	46.1	100.0	3	3
78	K168290	0.0	73.5	4.9	6.1	0.8	93.2	70.0	7	3
					Clus	ter 2				
7	IT121593	50.0	70.4	7.0	8.1	0.9	252.7	15.0	10	10
13	IT121613	0.0	74.7	4.7	8.5	0.6	278.0	0.0	10	10
29	IT121728	0.0	66.5	6.9	8.7	0.8	305.0	0.0	7	5
35	IT135893	0.0	64.0	7.8	8.1	0.9	241.0	0.0	7	5
42	IT163765	0.0	80.2	6.8	8.9	0.8	281.7	0.0	5	7
43	IT163766	0.0	60.5	6.7	8.2	0.8	265.0	0.0	5	5
47	IT163861	0.0	81.9	5.9	7.9	0.8	197.4	0.0	5	5
48	IT163864	0.0	80.0	7.7	9.1	0.9	307.9	0.0	5	7
49	IT163867	0.0	82.2	7.5	9.0	0.8	305.9	0.0	5	5
52	IT163887	0.0	81.6	6.1	8.9	0.7	256.6	0.0	7	7
53	IT163912	0.0	75.8	7.7	7.9	0.9	255.5	0.0	5	5
56	IT172914	0.0	77.0	9.0	8.8	1.0	356.4	0.0	7	7
60	IT187953	0.0	72.1	8.4	9.0	0.9	337.9	0.0	5	7
63	IT202090	0.0	69.8	8.3	9.3	0.9	368.4	0.0	5	7
64	IT202112	0.0	66.9	7.9	8.3	0.9	274.4	0.0	5	7
66	IT220035	10.0	79.9	6.4	7.3	0.9	180.7	0.0	10	10
69	K166284	10.0	75.0	7.3	7.4	0.9	211.0	0.0	7	5
73	K166291	0.0	88.9	6.1	8.9	0.7	268.2	0.0	7	7
76	K166302	5.0	65.3	7.2	7.9	0.9	231.0	0.0	7	5
79	K270686	0.0	82.6	7.2	7.5	0.9	187.2	0.0	5	5
					Clus	ter 3				
9	IT121600	10	82.90	6.23	7.86	0.79	199.10	5.0	7	5
11	IT121604	80	58.20	4.52	7.43	0.61	137.00	0.0	7	3
12	IT121612	30	81.10	4.78	6.46	0.74	113.10	0.0	7	3
44	IT163768	0	91.30	7.09	9.48	0.75	354.40	0.0	5	10
50	IT163870	0	92.10	8.70	8.46	1.03	297.70	60.0	7	5
67	K166281	30	55.90	4.68	4.22	1.11	47.50	100.0	5	3
68	K166283	0	69.60	5.68	5.98	0.95	108.90	50.0	7	3
70	K166285	0	76.90	6.35	6.21	1.02	125.10	40.0	7	3
75	K166297	0	88.00	6.64	6.86	0.97	159.90	5.0	7	5

Appendix 3. Plant quantitative traits measured on three clusters of the 79 onion accessions (Continue)


Bulb neck width; 3; 5; 7; 10, Bulb size; 3, 5, 7; 10

S.N.	Stock No. of genebank	Leaf color	Foliage attitude	Foliage waxiness	Bulb shape at root end	Bulb: base color of dry skin	Bulb shape	Bulb: color of epidermis of fleshy scales
					Cluster 1			
1	IT109552	Dark green	Erect	Present	Depressed	Red	Tran. Med. Elli.	Red
2	IT121528	Green	Erect	Absent	Flat	Brown	Ovate	White
3	IT121546	Green	Erect	Absent	Round	Brown	Oval	White
4	IT121547	Bright green	Erect	Absent	Round	Brown	Ovate	White
5	IT121576	Green	Erect	Absent	Round	Brown	Circle	White
6	IT121586	Green	Erect	Absent	Depressed	Red	Oval	Red
8	IT121598	Bright green	Erect	Absent	Depressed	Red	Circle	Red
10	IT121602	Green	Erect	Absent	Round	Brown	Oval	White
14	IT121614	Dark green	Erect	Absent	Flat	Others	Oval	Purple
15	IT121623	Dark green	Semi-erect	Absent	Flat	Mix	Circle	White
16	IT121624	Bright green	Semi-erect	Absent	Depressed	Red	Oval	Red
17	IT121630	Bright green	Semi-erect	Absent	Depressed	Brown	Oval	White
18	IT121636	Green	Erect	Absent	Flat	Red	Circle	Red
19	IT121659	Bright green	Semi-erect	Absent	Flat	Red	Circle	Red
20	IT121660	Green	Erect	Absent	Round	White	Circle	White
21	IT121661	Dark green	Erect	Present	Mix	Brown	Circle	White
22	IT121663	Bright green	Semi-erect	Absent	Round	Red	Ovate	Red
23	IT121686	Bright green	Erect	Absent	Depressed	Red	Circle	Red
24	IT121690	Bright green	Erect	Absent	Flat	Red	Circle	Red
25	IT121699	Bright green	Semi-erect	Absent	Flat	Brown	Mix	White
25 26	IT1210)) IT121711	Green	Erect	Absent	Flat	Brown	Circle	White
20 27	IT121711 IT121721	Green	Semi-erect	Absent	Round	Brown	Ovate	White
27	IT121721 IT121722	Green	Semi-erect	Absent	Round	Brown	Ovate	White
28 30	IT121722 IT121731	Green	Semi-erect	Absent	Round	Brown	Oval	White
31	IT121731 IT121733	Green	Semi-erect	Absent	Flat	White	Circle	White
	IT121735 IT121736		Semi-erect	Absent	Round	Brown		White
32		Bright green			Mix	Brown	Ovate Oval	
33 34	IT121742 IT135868	Bright green	Erect	Absent	Mix		Circle	White White
		Dark green	Erect	Present		Brown		
36	IT135907	Green	Mix Sauri ana at	Absent	Round	White	Circle	White
37	IT135932	Dark green	Semi-erect	Present	Round	Brown	Oval	White
38	IT136008	Green	Semi-erect	Absent	Round	Brown	Oval	White
39	IT136041	Green	Semi-erect	Present	Flat	Red	Broad oval	Red
40	IT136653	Green	Erect	Absent	Depressed	Red	Broad oval	Red
41	IT136654	Green	Semi-erect	Absent	Flat	Red	Circle	Red
45	IT163790	Dark green	Erect	Absent	Mix	Brown	Circle	White
46	IT163857	Green	Semi-erect	Absent	Round	Brown	Mix	White
51	IT163872	Green	Erect	Absent	Mix	Brown	Mix	White
54	IT163930	Green	Semi-erect	Absent	Mix	Brown	Circle	White
55	IT172873	Dark green	Erect	Absent	Round	Brown	Circle	White
57	IT172965	Dark green	Semi-erect	Absent	Round	Brown	Circle	White
58	IT172972	Dark green	Erect	Absent	Flat	Brown	Circle	White
59	IT187950	Bright green	Erect	Absent	Round	Brown	Oval	White
61	IT189936	Dark green	Erect	Absent	Round	Brown	Ovate	White
62	IT200522	Green	Erect	Present	Flat	Red	Circle	Red
65	IT203340	Bright green	Erect	Absent	Flat	White	Circle	White

Appendix 4. Plant qualitative traits measured in three different clusters of the 79 onion accessions

S.N.	Stock No. of genebank	Leaf color	Foliage attitude	Foliage waxiness	Bulb shape at root end	Bulb: base color of dry skin	Bulb shape	Bulb: color of epidermis of fleshy scales
					Cluster 1			
71	K166287	Mix	Erect	Absent	Round	Brown	Mix	White
72	K166288	Dark green	Semi-erect	Absent	Mix	Brown	Mix	White
74	K166294	Dark green	Erect	Absent	Round	Brown	Oval	White
77	K168154	Green	Erect	Absent	Mix	Red	Oval	Red
78	K168290	Mix	Erect	Absent	Mix	Brown	Circle	White
					Cluster 2			
7	IT121593	Dark green	Erect	Present	Mix	Brown	Circle	Purple
13	IT121613	Mix	Semi-erect	Mix	Flat	White	Circle	White
29	IT121728	Bright green	Erect	Absent	Round	White	Circle	White
35	IT135893	Green	Erect	Absent	Round	White	Oval	White
42	IT163765	Bright green	Semi-erect	Absent	Round	Brown	Circle	White
43	IT163766	Green	Semi-erect	Absent	Flat	Brown	Circle	White
47	IT163861	Mix	Semi-erect	Absent	Round	Brown	Circle	White
48	IT163864	Green	Erect	Absent	Round	Brown	Circle	White
49	IT163867	Bluish green	Semi-erect	Absent	Round	Brown	Circle	White
52	IT163887	Mix	Semi-erect	Absent	Round	Brown	Circle	White
53	IT163912	Mix	Semi-erect	Absent	Round	Brown	Mix	White
56	IT172914	Green	Erect	Present	Round	Brown	Ovate	White
60	IT187953	Green	Erect	Present	Round	Brown	Oval	White
63	IT202090	Dark green	Erect	Present	Round	Brown	Mix	White
64	IT202112	Green	Erect	Absent	Round	White	Circle	White
66	IT220035	Mix	Erect	Absent	Mix	Brown	Mix	White
69	K166284	Mix	Erect	Mix	Round	Brown	Oval	White
73	K166291	Mix	Erect	Absent	Flat	Red	Circle	Red
76	K166302	Mix	Erect	Present	Round	Brown	Ovate	White
79	K270686	Mix	Erect	Absent	Round	Brown	Oval	White
					Cluster 3			
9	IT121600	Dark green	Mix	Mix	Flat	Mix	Circle	Mix
11	IT121604	Mix	Mix	Mix	Flat	Red	Broad oval	Red
12	IT121612	Green	Mix	Mix	Mix	Mix	Circle	White
44	IT163768	Bright green	Semi-erect	Mix	Round	Mix	Mix	Mix
50	IT163870	Green	Semi-erect	Absent	Round	Mix	Oval	Mix
67	K166281	Mix	Erect	Absent	Flat	Mix	Oval	Mix
68	K166283	Mix	Semi-erect	Absent	Round	Mix	Mix	Mix
70	K166285	Mix	Erect	Mix	Round	Mix	Mix	Mix
75	K166297	Dark green	Semi-erect	Absent	Flat	Mix	Ovate	Mix

Appendix 4. Plant qualitative traits measured in three different clusters of the 79 onion accessions (Continue)

PC1(24.39%)

Appendix 5. Principal component bi-plot of variables among the onion accessions. BR; bolting rate (%); PHT; plant height (Cm); BPD; bulb polar diameter (Cm); BED; bulb equatorial diameter (Cm); BSI; bulb shape index; BWT; bulb weight (g); DSB; degree of bulb of splitting into bulblets (%); BNW; bulb neck width; BSZ; bulb size; LC; leaf color; FA; foliage attitude; FW; foliage waxiness; BSR; bulb shape at root end; BCD; bulb: base color of dry skin; BS; bulb shape; FSC; bulb: color of epidermis of fleshy scales. The accession names are listed in Appendix 1.