DOI QR코드

DOI QR Code

기능성 단옥수수 품종 육성을 위한 자식계통의 카로티노이드 함량 및 항산화 활성 평가

Assessing Carotenoid Levels and Antioxidant Properties in Korean Sweet Corn Inbred Lines to Develop High-Quality Sweet Corn Varieties through Breeding

  • 하준영 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 신성휴 (농촌진흥청 기획조정관실 혁신행정법무담당관실) ;
  • 고영삼 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 배환희 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 김상곤 (경남항노화연구원 항노화연구실)
  • Jun Young Ha (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Seong-Hyu Shin (Management Innovation and Legal Affairs Division, Rural Development Administration) ;
  • Young Sam Go (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Hwan Hee Bae (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Sang Gon Kim (AntiAging Research Group, Gyeongnam AntiAging Research Institute)
  • 투고 : 2023.03.29
  • 심사 : 2023.04.24
  • 발행 : 2023.06.01

초록

본 연구는 국립식량과학원에서 육성한 단옥수수 자식계통의 phytochemical 함량과 항산화 활성을 평가하여 고기능성 단옥수수 품종 육성을 위한 기초 자료로 이용하고자 수행하였다. 1. Carotenoid 함량이 가장 높은 계통은 KSE34 (1239.3±6.4 mg 100 g-1), flavonoid 함량이 가장 높은 계통은 KSE6(68.6±9.6 mg CE 100 g-1)으로 나타나 각 계통마다 화합물의 함량이 다양하였다. Phenolic compound 함량은 대부분의 단옥수수 자식계통에서 풍부하게 나타났으며, KSE8과 KSE25가 가장 높은 함량을 가진 계통이었다. 2. DPPH와 ABTS 라디칼 소거능으로 평가한 국내 단옥수수 자식계통의 항산화 활성 중 DPPH 활성은 계통 간에 다양하였으나, ABTS 활성은 차이가 적게 나타났다. KSE30과 KSE6이 각각 108.4±9.6 mg TE 100 g-1, 104.2±12.8 mg TE 100 g-1로 가장 좋은 DPPH 활성을 보인 계통이었으며 KSE47, KSE4, KSE21은 낮은 활성을 보였다. 3. 계층 군집 분석과 주성분 분석을 사용하여 단옥수수 자식계통의 농업적 특성을 비교하고 분류하였다. Carotenoid, polyphenol, flavonoid 함량이 높고 항산화 활성이 우수한 4개 계통(KSE6, KSE30, KSE34, KSE40)이 선발되었고, 향후 조합 능력 평가를 거쳐 고기능성 단옥수수 품종 개발에 활용할 것이다.

Sweet corn is widely consumed due to its high nutritional content and diverse phytochemical composition, including carotenoids and phenolic compounds, which have several benefits for human health. This study aims to identify breeding materials for developing high-functional sweet corn varieties by evaluating the phytochemical and antioxidant activities of 37 Korean sweet corn inbred lines. The results revealed genetic variation in various components, such as carotenoid content (range of 120.7~1239.3 mg 100 g-1), polyphenol content (490.5~740.6 mg gallic acid equivalent 100 g-1), and flavonoid content (7.3~68.6 mg catechin equivalent 100 g-1). In addition, the free radical scavenging capacity, measured using 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid), also varied among the inbred lines. Therefore, in this study, we identified Korean sweet corn inbred lines with high phytochemical content and excellent antioxidant activity. The development of sweet corn varieties with improved functionality is expected to further expand the role of sweet corn as a source of antioxidants in the Korean diet.

키워드

과제정보

본 연구는 농촌진흥청 작물시험 연구사업(ATIS 과제번호: PJ014155042022)의 지원에 의해 이루어진 결과로 이에 감사드립니다.

참고문헌

  1. Al-Farsi, M., C. Alasalvar, A. Morris, M. Baron, and F. Shahidi. 2005. Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. J. Agric. Food Chem. 53 : 7592-7599. https://doi.org/10.1021/jf050579q
  2. Bae, H. H., G. Yi, Y. S. Go, J. Y. Ha, Y. Choi, J. H. Son, S. Shin, T. W. Jung, and S. Lee. 2021. Measuring antioxidant activity in yellow corn (Zea mays L.) inbreds from three different geographic regions. Appl. Biol. Chem. 64 : 56.
  3. Baek, S. B., B. Y. Son, J. T. Kim, H. H. Bae, Y. S. Go, and S. L. Kim. 2020. Changes and Prospects in the Development of Corn Varieties in Korea. Korean J. Breed. Sci. 52 : 93-102. https://doi.org/10.9787/KJBS.2020.52.S.93
  4. Barth, E., J. T. V. d. Resende, A. F. P. Moreira, K. H. Mariguele, A. R. Zeist, M. B. Silva, G. C. G. Stulzer, J. G. M. Mafra, L. Simoes Azeredo Goncalves, S. R. Roberto, and K. Youssef. 2020. Selection of Experimental Hybrids of Strawberry Using Multivariate Analysis. Agronomy. 10(4) : 598.
  5. Baseggio, M., M. Murray, M. Magallanes-Lundback, N. Kaczmar, J. Chamness, E. S. Buckler, M. E. Smith, D. DellaPenna, W. F. Tracy, and M. A. Gore. 2020. Natural variation for carotenoids in fresh kernels is controlled by uncommon variants in sweet corn. Plant Genome. 13(1) : e20008.
  6. Carocho, M. and I. C. Ferreira. 2013. A review on antioxidants, prooxidants and related controversy : natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol. 51 : 15-25. https://doi.org/10.1016/j.fct.2012.09.021
  7. Chatham, L. A., M. Paulsmeyer, and J. A. Juvik. 2019. Prospects for economical natural colorants : insights from maize. Theor. Appl. Genet. 132(11) : 2927-2946. https://doi.org/10.1007/s00122-019-03414-0
  8. Dewanto, V., X. Wu, and R. H. Liu. 2002. Processed sweet corn has higher antioxidant activity. J. Agric. Food Chem. 50 : 4959-4964. https://doi.org/10.1021/jf0255937
  9. Egesel, C. O. 2001. Genetic variation among maize genotypes for carotenoid and tocopherol compounds. Ph.D. Thesis (62-08, secB; P3423). University of Illinois at Urbana-Champaign.
  10. Egesel, C. O., J. C. Wong, R. J. Lambert, and T. R. Rocheford. 2003. Combining Ability of Maize Inbreds for Carotenoids and Tocopherols. Crop Sci. 43 : 818-823. https://doi.org/10.2135/cropsci2003.8180
  11. Fanning, K. J., I. Martin, L. Wong, V. Keating, S. Pun, and T. O'Hare. 2010. Screening sweetcorn for enhanced zeaxanthin concentration. J. Sci. Food Agric. 90(1) : 91-96. https://doi.org/10.1002/jsfa.3787
  12. Grogan, C., C. Blessin, R. Dimler, and C. Campbell. 1963. Parental Influence on Xanthophylls and Carotenes in Corn. Crop Sci. 3 : 213-214. https://doi.org/10.2135/cropsci1963.0011183X000300030011x
  13. Gulcin, I. 2020. Antioxidants and antioxidant methods : an updated overview. Arch. Toxicol. 94 : 651-715. https://doi.org/10.1007/s00204-020-02689-3
  14. Gulcin, I., F. Topal, R. Cakmakci, M. Bilsel, A. C. Goren, and U. Erdogan. 2011. Pomological features, nutritional quality, polyphenol content analysis, and antioxidant properties of domesticated and 3 wild ecotype forms of raspberries (Rubus idaeus L.). J. Food Sci. 76 : 585-593.
  15. Horwitz, W. 1975. Official methods of analysis. A. O. A. C. International.
  16. Hu, Q. P. and J. G. Xu. 2011. Profiles of carotenoids, anthocyanins, phenolics, and antioxidant activity of selected color waxy corn grains during maturation. J. Agric. Food Chem. 59(5) : 2026-2033. https://doi.org/10.1021/jf104149q
  17. Karasu, A., O. Z. Mehmet, M. Sincik, A. T. Goksoy, and Z. M. Turan. 2010. Combining ability and heterosis for yield and yield components in sunflower. Not. Bot. Horti Agrobot. Cluj Napoca. 38 : 259-264.
  18. Kaushal, M., R. Sharma, D. Vaidya, A. Gupta, H. K. Saini, A. Anand, C. Thakur, A. Verma, M. Thakur, Priyanka, and D. Kc. 2022. Maize : an underexploited golden cereal crop. Cereal Res. Commun. 51 : 3-14. https://doi.org/10.1007/s42976-022-00280-3
  19. Kenga, R., S. O. Alabi, and S. C. Gupta. 2004. Combining ability studies in tropical sorghum (Sorghum bicolor (L.) Moench). Field Crops Research 88 : 251-260. https://doi.org/10.1016/j.fcr.2004.01.002
  20. Kim, J. T., G. Yi, I. M. Chung, B. Y. Son, H. H. Bae, Y. S. Go, J. Y. Ha, S. B. Baek, and S. L. Kim. 2020b. Timing and Pattern of Anthocyanin Accumulation during Grain Filling in Purple Waxy Corn (Zea mays L.) Suggest Optimal Harvest Dates. A. C. S. Omega. 5(25) : 15702-15708. https://doi.org/10.1021/acsomega.0c02099
  21. Kim, J. T., G. Yi, M. J. Kim, B. Y. Son, H. H. Bae, Y. S. Go, S. L. Kim, S. B. Baek, S. H. Kim, and I. M. Chung. 2020a. Glycolysis stimulation and storage protein accumulation are hallmarks of maize (Zea mays L.) grain filling. Appl. Biol. Chem. 63 : 54.
  22. Kim, J. T., I. M. Chung, M. J. Kim, J. S. Lee, B. Y. Son, H. H. Bae, Y. S. Go, S. L. Kim, S. B. Baek, S. H. Kim, and G. Yi. 2022. Comparison of antioxidant activity assays in fresh purple waxy corn (Zea mays L.) during grain filling. Appl. Biol. Chem. 65 : 1.
  23. Kim, M. J., H. J. Park, S. L. Kim, G. H. Jung, J. T. Kim, S. H. Shin, Y. U. Kwon, and I. M. Chung. 2014. Changes in the Physicochemical Characteristics of Sweet Corn Kernels during Grain Filling Stage with Different Sowing Date. Korean J. Crop Sci. 59(4) : 445-456. https://doi.org/10.7740/kjcs.2014.59.4.445
  24. Lee, J. S., B. Y. Son, J. T. Kim, H. H. Bae, S. G. Kim, and S. B. Baek. 2017. Change of total carotenoid contents and antioxidant activities of yellow waxy corns (Zea mays L.) depending on harvest time. Korean J. Breed. Sci. 49(4) : 359-368. https://doi.org/10.9787/KJBS.2017.49.4.359
  25. Li, F., R. Vallabhaneni, J. Yu, T. Rocheford, and E. T. Wurtzel. 2008. The maize phytoene synthase gene family : overlapping roles for carotenogenesis in endosperm, photomorphogenesis, and thermal stress tolerance. Plant Physiol. 147(3) : 1334-1346. https://doi.org/10.1104/pp.108.122119
  26. Li, R., L. H. Xiao, J. Wang, Y. L. Lu, T. Z. Rong, G. T. Pan, Y. Q. Wu, Q. Tang, H. Lan, and M. Cao. J. 2013. Combining Ability and Parent-Offspring Correlation of Maize (Zea may L.) Grain β-Carotene Content with a Complete Diallel. J. Integr. Agric. 12 : 19-26. https://doi.org/10.1016/S2095-3119(13)60201-4
  27. Luo, D., X. Li, L. Zhao, and G. Chen. 2021. Regulation of phenolic release in corn seeds (Zea mays L.) for improving their antioxidant activity by mix-culture fermentation with Monascus anka, Saccharomyces cerevisiae and Bacillus subtilis. J. Biotechnol. 325 : 334-340. https://doi.org/10.1016/j.jbiotec.2020.10.002
  28. MAFRA. 2022. Statistical year book of agriculture, food and rural affairs. Ministry of Agriculture, Food and Rural Affairs.
  29. Masisi, K., K. Le, N. Ghazzawi, M. H. Moghadasian, and T. Beta. 2017. Dietary corn fractions reduce atherogenesis in low-density lipoprotein receptor knockout mice. Nutr. Res. 37 : 87-96. https://doi.org/10.1016/j.nutres.2016.12.005
  30. Milovanovic, B., I. Djekic, J. Miocinovic, V. Djordjevic, J. M. Lorenzo, F. J. Barba, D. Morlein, and I. Tomasevic. 2020. What Is the Color of Milk and Dairy Products and How Is It Measured? Foods. 9 : 1629.
  31. Pang, Z., G. Zhou, J. Ewald, L. Chang, O. Hacariz, N. Basu, and J. Xia. 2022. Using MetaboAnalyst 5.0 for LC-HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat. Protoc. 17 : 1735-1761. https://doi.org/10.1038/s41596-022-00710-w
  32. Randolph, L. and D. B. Hand. 1940. Relation between carotenoid content and number of genes per cell in diploid and tetraploid corn. J. Agric. Res. 60 : 51-64.
  33. Rocha-Villarreal, V., J. F. Hoffmann, N. L. Vanier, S. O. Serna-Saldivar, and S. Garcia-Lara, 2018. Hydrothermal treatment of maize : Changes in physical, chemical, and functional properties. Food Chem. 263 : 225-231. https://doi.org/10.1016/j.foodchem.2018.05.003
  34. Rural Development Administration (RDA). 2012. Agricultural science technology standards for investigation of research. pp. 366-385.
  35. Xiang, N., T. Wen, B. Yu, G. Li, C. Li, W. Li, W. Lu, J. Hu, and X. Guo. 2020. Dynamic effects of post-harvest preservation on phytochemical profiles and antioxidant activities in sweet corn kernels. Int. J. Food Sci. Technol. 55(9) : 3111-3122. https://doi.org/10.1111/ijfs.14575
  36. Zahid, N. A., H. Z. E. Jaafar, and M. Hakiman. 2021. Micro-propagation of Ginger (Zingiber officinale Roscoe) 'Bentong' and Evaluation of Its Secondary Metabolites and Antioxidant Activities Compared with the Conventionally Propagated Plant. Plants (Basel). 10(4) : 630.