DOI QR코드

DOI QR Code

Bacterial load and drug resistance in sewage from industrially polluted regions of South Gujarat region

  • 투고 : 2020.10.18
  • 심사 : 2023.01.27
  • 발행 : 2023.03.25

초록

Wastewater of anthropogenic origin is known to harbor various bacteria that are known to be of potential risk to human health and environment. It is of utmost importance to monitor such water sources. Coliforms present in the sewage water samples of municipal sewage treatment plants located at three different places in the South Gujarat region (Surat, Navsari and Vapi) of India were analyzed for their coliforms load as well as tested for their drug resistance. Using cultivation-based techniques microbial load and drug resistance (Amoxicillin, Tetracycline, Ciprofloxacin, Erythromycin, Trimethoprim and Sulphamethoxazole) were analyzed. Water treatment statistically significantly decreased the bacterial load in Vapi and Navsari samples. The optical density of with and without antibiotics of all the three locations was shown to increase significantly after 72 hours. Of all the isolates tested, except isolate 'VA5' (resisted up to 90 ㎍ of Ampicillin) all other isolates resisted 256 ㎍ concentration of antibiotics tested. This study indicates that the sewage water is being contaminated with drugs and/or antibiotics due to industrial and/or anthropogenic activities. Regular monitoring of the water quality is required followed by implementation of environmental laws for reducing the pollutants, that are of human health and environment concern.

키워드

과제정보

The authors wish to thank the Head of Sewage treatment plants of Surat, Vapi and Navsari (Gujarat, India). We would also like to thank Uka Tarsadia University for UTU-RPS grant and Government of Gujarat, India for Student-SciTech Grant from GUJ-COST for the financial support.

참고문헌

  1. Akhter, A., Imran, M. and Akhter, F. (2014), "Antimicrobial resistant coliform bacteria in the Gomti river water and determination of their tolerance level", Bioinformation, 10(4), 167-174. https://doi.org/10.6026/97320630010167.
  2. Andersson, D. I. and Hughes, D. (2014), "Microbiological effects of sublethal levels of antibiotics", Nature Rev. Microbiol., 12(7), 465-478. https://doi.org/10.1038/nrmicro3270.
  3. Antibiotic resistance (2018), "Fact sheets", WHO. Available: www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance [Accessed 2nd August 2019].
  4. Arias, C.A. and Murray, B.E. (2009), "Antibiotic-resistant bugs in the 21st Century - A clinical super-challenge", New England J. Medicine, 360(5), 439-443. https://doi.org/10.1056/NEJMp0804651.
  5. Atieno, N.R., Owuor, O.P. and Omwoyo, O. (2013), "Heavy metal and associated antibiotic resistance of fecal coliforms, fecal streptococci and pathogens isolated from wastewaters of abattoirs in Nairobi, Kenya", J. Appl. Biosci., 64(1), 4858-4866. https://doi.org/10.4314/jab.v64i1.88476.
  6. Baker-Austin, C., Wright, M.S., Stepanauskas, R. and McArthur, J.V. (2006), "Co-selection of antibiotic and metal resistance", Trends Microbiol., 14(4), 176-182. https://doi.org/10.1016/j.tim.2006.02.006.
  7. Berg, J., Thorsen, M.K., Holm, P.E., Jensen, J., Nybroe, O. and Brandt, K.K. (2010), "Cu exposure under field conditions coselects for antibiotic resistance as determined by a novel cultivation-independent bacterial community tolerance assay", Environ. Sci. Technol., 44(22), 8724-8728. https://doi.org/10.1021/es101798r.
  8. Brechet, C., Plantin, J., Sauget, M., Thouverez, M., Talon, D., Cholley, P., Guyeux, C., Hocquet, D. and Bertrand, X. (2014), "Wastewater treatment plants release large amounts of extended-spectrum β-lactamase-producing escherichia coli Into the environment", Clinical Infectious Diseases, 58(12), 1658-1665. https://doi.org/10.1093/cid/ciu190.
  9. Cenci, G., Morozzi, G., Scazzocchio, F. and Morosi, A. (1982), "Antibiotic and metal resistance of Escherichia coli isolates from different environmental sources", Zentralblatt Fur Bakteriologie Mikrobiologie Und Hygiene: I. Abt. Originale C: Allgemeine, Angewandte Und Okologische Mikrobiologie, 3(3), 440-449. https://doi.org/10.1016/S0721-9571(82)80028-8.
  10. Cooke, M.D. (1979), "Antibiotic resistance among coliform and fecal coliform bacteria isolated from sewage, seawater, and marine shellfish", Antimicrobial Agents and Chemotherapy, 9(6), 879-884. https://doi.org/10.1128/AAC.9.6.879
  11. Czekalski, N., Berthold, T., Caucci, S., Egli, A. and Burgmann, H. (2012), "Increased levels of multiresistant bacteria and resistance genes after wastewater treatment and their dissemination into lake Geneva, Switzerland", Front. Microbiol., 3. https://doi.org/10.3389/fmicb.2012.00106.
  12. De La Rosa-Acosta, M., Jimenez-Collazo, J., Maldonado-Roman, M., Malave-Llamas, K. and Musa-Wasil, J.C. (2015), "Bacteria as potential indicators of heavy metal contamination in a tropical mangrove and the implications on environmental and human health", J. Tropical Life Sci., 5(3), 100-116. https://doi.org/10.11594/jtls.05.03.01.
  13. Dubey, M. and Ujjania, N. (2015), "Assessment of water quality and sources of pollution in downstream of Ukai, Tapi River (Gujarat)", Current World Environ., 10(1), 350-354. https://doi.org/10.12944/CWE.10.1.45.
  14. Gautam, S.K., Sharma, D., Tripathi, J.K., Ahirwar, S. and Singh, S.K. (2013), "A study of the effectiveness of sewage treatment plants in Delhi region", Appl. Water Sci., 3(1), 57-65. https://doi.org/10.1007/s13201-012-0059-9.
  15. Gruber, J.S., Ercumen, A. and Colford, J.M. (2014), "Coliform bacteria as indicators of diarrheal risk in household drinking water: Systematic review and meta-analysis", PLoS ONE, 9(9), e107429. https://doi.org/10.1371/journal.pone.0107429.
  16. Hendricks, R. and Pool, E.J. (2012), "The effectiveness of sewage treatment processes to remove faecal pathogens and antibiotic residues", J. Environ. Sci. Health. Part A, Toxic/Hazardous Substances & Environ. Eng., 47(2), 289-297. https://doi.org/10.1080/10934529.2012.637432.
  17. Holzel, C.S., Muller, C., Harms, K.S., Mikolajewski, S., Schafer, S., Schwaiger, K. and Bauer, J. (2012), "Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance", Environ. Res., 113, 21-27. https://doi.org/10.1016/j.envres.2012.01.002.
  18. Jassim, S.A.A. and Limoges, R.G. (2014), "Natural solution to antibiotic resistance: bacteriophages 'The Living Drugs'", World J. Microbiol. Biotechnol., 30(8), 2153-2170. https://doi.org/10.1007/s11274-014-1655-7.
  19. Kardos, N. (2017), "Overuse of antibiotics and Aantibiotic resistance in medical applications featuring Carbapenemase Resistant Enterobacteriaceae (CRE)", SOJ Microbiology & Infectious Diseases, 5(5), 1-21. https://doi.org/10.15226/sojmid/5/5/00183.
  20. Karkman, A., Do, T.T., Walsh, F. and Virta, M.P.J. (2018), "Antibiotic-resistance genes in waste water", Trends in Microbiology, 26(3), 220-228. https://doi.org/10.1016/j.tim.2017.09.005.
  21. Klein, E.Y., Boeckel, T.P.V., Martinez, E.M., Pant, S., Gandra, S., Levin, S.A., Goossens, H. and Laxminarayan, R. (2018), "Global increase and geographic convergence in antibiotic consumption between 2000 and 2015", Proceedings of the National Academy of Sciences, 115(15), 3463-3470. https://doi.org/10.1073/pnas.1717295115.
  22. Knapp, C.W., Callan, A.C., Aitken, B., Shearn, R., Koenders, A. and Hinwood, A. (2017), "Relationship between antibiotic resistance genes and metals in residential soil samples from Western Australia", Environ. Sci. Pollut. Res., 24(3), 2484-2494. https://doi.org/10.1007/s11356-016-7997-y.
  23. Lee, L.K., Kim, J.H., Park, J. and Kim, J. (2016), "Water quality at water treatment plants classified by type", Toxicology and Environ. Health Sci., 8(5), 296-301. https://doi.org/10.1007/s13530-016-0289-6.
  24. Li, B. and Webster, T.J. (2018), "Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopaedic infections", J. Orthopaedic Res. : Official Publication of the Orthopaedic Res. Soc., 36(1), 22-32. https://doi.org/10.1002/jor.23656.
  25. Maloo, A., Borade, S., Dhawde, R., Gajbhiye, S.N. and Dastager, S.G. (2014), "Occurrence and distribution of multiple antibiotic-resistant bacteria of Enterobacteriaceae family in waters of Veraval coast, India", Environ. Exp. Biology, 12, 43-50.
  26. Manaia, C.M., Rocha, J., Scaccia, N., Marano, R., Radu, E., Biancullo, F., Cerqueira, F., Fortunato, G., Iakovides, I.C., Zammit, I., Kampouris, I., Vaz-Moreira, I. and Nunes, O.C. (2018), "Antibiotic resistance in wastewater treatment plants: Tackling the black box", Environ. Int., 115, 312-324. https://doi.org/10.1016/j.envint.2018.03.044.
  27. Manyi-Loh, C., Mamphweli, S., Meyer, E. and Okoh, A. (2018), "Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications", Molecules, 23(4), 795. https://doi.org/10.3390/molecules23040795.
  28. Martins da Costa, P., Vaz-Pires, P. and Bernardo, F. (2006), "Antimicrobial resistance in Enterococcus spp. isolated in inflow, effluent and sludge from municipal sewage water treatment plants", Water Res., 40(8), 1735-1740. https://doi.org/10.1016/j.watres.2006.02.025.
  29. Medardus, J.J., Molla, B.Z., Nicol, M., Morrow, W.M., Rajala-Schultz, P.J., Kazwala, R. and Gebreyes, W.A. (2014), "In-feed use of heavy metal micronutrients in U.S. swine production systems and its role in persistence of multidrug-resistant Salmonellae", Appl. Environ. Microbiol., 80(7), 2317-2325. https://doi.org/10.1128/AEM.04283-13.
  30. Mulamattathil, S.G., Bezuidenhout, C., Mbewe, M. and Ateba, C.N. (2014), "Isolation of environmental bacteria from surface and drinking water in mafikeng, South Africa, and characterization using their antibiotic resistance profiles", [Research article]. https://doi.org/10.1155/2014/371208.
  31. Naidoo, C.C. and Pillay, M. (2014), "Increased in vitro fitness of multi- and extensively drug-resistant F15/LAM4/KZN strains of Mycobacterium tuberculosis", Clinical Microbiol. Infection, 20(6), 361-369. https://doi.org/10.1111/1469-0691.12415.
  32. Navarro Llorens, J.M., Tormo, A. and Martinez-Garcia, E. (2010), "Stationary phase in gram-negative bacteria", FEMS Microbiol. Rev., 34(4), 476-495. https://doi.org/10.1111/j.1574-6976.2010.00213.x.
  33. Nazaret, S. and Aminov, R. (Eds.) (2015), "Role and prevalence of antibiosis and the related resistance genes in the environment". Frontiers Media SA,. Retrieved from http://www.frontiersin.org/books/Role_and_prevalence_of_antibiosis_and_the_related_resistance_genes_in_the_environment/533.
  34. Nguyen, C.C., Hugie, C.N., Kile, M.L. and Navab-Daneshmand, T. (2019), "Association between heavy metals and antibiotic-resistant human pathogens in environmental reservoirs: A review", Front. Environ. Sci. Eng., 13(3), 46. https://doi.org/10.1007/s11783-019-1129-0.
  35. Nicholson, F.A., Smith, S.R., Alloway, B.J., Carlton-Smith, C. and Chambers, B.J. (2003), "An inventory of heavy metals inputs to agricultural soils in England and Wales", Sci. Total Environ., 311(1-3), 205-219. https://doi.org/10.1016/S0048-9697(03)00139-6.
  36. Osinska, A., Korzeniewska, E., Harnisz, M. and Niestepski, S. (2017), "Impact of type of wastewater treatment process on the antibiotic resistance of bacterial populations", E3S Web of Conferences, 17, 00070. https://doi.org/10.1051/e3sconf/20171700070.
  37. Reinthaler, F.F., Posch, J., Feierl, G., Wust, G., Haas, D., Ruckenbauer, G., Mascher, F. and Marth, E. (2003), "Antibiotic resistance of E. coli in sewage and sludge", Water Res., 37(8), 1685-1690. https://doi.org/10.1016/S0043-1354(02)00569-9.
  38. Rompre, A., Servais, P., Baudart, J., de-Roubin, M.R. and Laurent, P. (2002), "Detection and enumeration of coliforms in drinking water: current methods and emerging approaches", J. Microbiol. Meth., 49(1), 31-54. https://doi.org/10.1016/S0167-7012(01)00351-7
  39. Sajidu, S.M.I., Masamba, W.R.L., Henry, E.M.T. and Kuyeli, S.M. (2007), "Water quality assessment in streams and wastewater treatment plants of Blantyre, Malawi", Physics and Chemistry of the Earth, Parts A/B/C, 32(15), 1391-1398. https://doi.org/10.1016/j.pce.2007.07.045.
  40. Schwartz, T., Kohnen, W., Jansen, B. and Obst, U. (2003), "Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms", FEMS Microbiol. Ecol., 43(3), 325-335. https://doi.org/10.1111/j.1574-6941.2003.tb01073.x.
  41. Seiler, C. and Berendonk, T.U. (2012), "Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture", Front. Microbiol., 3. https://doi.org/10.3389/fmicb.2012.00399.
  42. Shah, B.A., Shah, A.V., Mistry, C.B. and Navik, A.J. (2012), "Assessment of heavy metals in sediments near Hazira industrial zone at Tapti River estuary, Surat, India", Environ. Earth Sci., 69(7), 2365-2376. https://doi.org/10.1007/s12665-012-2066-4.
  43. Sharma, R., Hussain, J., Kumar, R., Kulshreshta, S.K. and Singh, R. (2014), "Status of trace and toxic metals in Indian rivers", River data directorate, Planning and development organisation, Central wtaer commission, New delhi, India.
  44. Singh, R., Singh, A.P., Kumar, S., Giri, B.S. and Kim, K.H. (2019), "Antibiotic resistance in major rivers in the world: A systematic review on occurrence, emergence, and management strategies", J. Cleaner Production, 234, 1484-1505. https://doi.org/10.1016/j.jclepro.2019.06.243.
  45. Stevens, M., Ashbolt, N. and Cinliffe, D. (2011), "Review of coliforms". National medical health and research council,.
  46. Uematsu, H., Yamashita, K., Kunisawa, S., Fushimi, K. and Imanaka, Y. (2016), "The economic burden of methicillin-resistant Staphylococcus aureus in community-onset pneumonia inpatients", Am. J. Infection Control, 44(12), 1628-1633. https://doi.org/10.1016/j.ajic.2016.05.008.
  47. Verma, S. and Rawat, A. (2014), "Multi-drug resistance in Indian rivers: Review", Int. J. Multidiscip. Current Res., 2, 994-1001.
  48. Wales, A.D. and Davies, R.H. (2015), "Co-Selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens", Antibiotics, 4(4), 567-604. https://doi.org/10.3390/antibiotics4040567.
  49. Gujarat: Status of environment and related issues (2018), Water. Gujarat Ecology Commission. Report. Available www.gujenvis.nic.in/PDF/soe-water.pdf [Accessed 25th August 2019].
  50. Gujarat: Status of environment and related issues (2018), Industrial Environment. Gujarat Ecology Commission. Report. Available www.gujenvis.nic.in/PDF/soe-industrial.pdf [Accessed 25th August 2019].