DOI QR코드

DOI QR Code

Fabrication and Characterization of Triboelectric Nanogenerator based on Porous Animal-collagen

다공성 동물성-콜라겐을 이용한 마찰전기 나노발전기 제작 및 특성평가

  • Shenawar Ali Khan (Department of Electronic Engineering, Jeju National University) ;
  • Sheik Abdur Rahman (Department of Electronic Engineering, Jeju National University) ;
  • Woo Young Kim (Department of Electronic Engineering, Jeju National University)
  • Received : 2023.02.18
  • Accepted : 2023.02.28
  • Published : 2023.02.28

Abstract

Nanogenerators containing biomaterials are eco-friendly electronic devices in terms of being a non-polluting energy source and biodegradable electronic waste. In particular, the amount of waste will be also reduced if the biomaterial can be extracted from biowaste. In this study, a triboelectric nanogenerator was fabricated using animal collagen present in the skin of a mammal and its characteristion was proformed. The electro-anodic layer of the triboelectric nanogenerator was constructed by forming a collagen film using the spin coating method, and it was confirmed that the film was porous from scanning electron microscopy. The fabricated triboelectric nanogenerator exhibited an open-circuit voltage from 7 V at 3 Hz to 15 V at 5 Hz due to periodic mechanical movement, and a short-circuit current of 3.8 uA at 5 Hz. In conclusion, collagen-containing triboelectric nanogenerators can be power source for low-power operating devices such as sensors and are also expected to be useful for reducing electronic waste.

바이오물질을 포함하는 나노발전기는 무공해 에너지원이며 생분해성 전자폐기물이라는 점에서 친환경적인 전자소자이다. 특히 바이오 물질이 바이오폐기물로부터 추출될 수 있다면 바이오폐기물의 양도 줄어들 것이다. 본 연구에서는 포유동물의 피부에 존재하는 동물성 콜라겐을 이용하여 마찰전기 나노발전기를 제작하였고 그 특성평가를 진행하였다. 마찰전기 나노발전기의 전기적 양극층은 회전 도포방법을 이용하여 콜라겐 막을 형성하여 구성하였으며, 주사전자현미경으로 막이 다공성임을 확인하였다. 제작한 마찰전기 나노발전기는 주기적인 기계적 운동에 의해 3 Hz에서 7 V부터 5 Hz에서 15 V의 개방전압과 5 Hz에서 3.8 ㎂의 단락전류를 보였다. 결론적으로, 콜라겐 함유 마찰전기 나노발전기는 센서와 같은 저전력 구동 장치의 전원이 될 수 있으며 전자 폐기물 감소에도 유용할 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 한국연구재단(NRF-2021R1A4A2000934, 2021R1F1A1062800)에 의해 지원을 받아 수행되었습니다.

References

  1. X. Cao, Y. Jie, N. Wang, Z. L. Wang, "Triboelectric Nanogenerators Driven Self-Powered Electrochemical Processes for Energy and Environmental Science", Advanced Energy Materials, Vol. 6, No. 23 pp. 1600665, (2016).
  2. H. T. Baytekin, A. Z. Patashinski, M. Branicki, B. Baytekin, S. Soh, B. A. Grzybowski, "The mosaic of surface charge in contact electrification", Science, Vol. 333, No. 6040 pp. 308-312, (2011). https://doi.org/10.1126/science.1201512
  3. F. R. Fan, Z. Q. Tian, Z. L. Wang, "Flexible triboelectric generator", Nano Energy, Vol. 1, No. 2 pp. 328-334, (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
  4. S. Maiti, S. K. Karan, J. K. Kim, B. B. Khatua, "Nature Driven Bio-Piezoelectric/Triboelectric Nanogenerator as Next-Generation Green Energy Harvester for Smart and Pollution Free Society", Advanced Energy Materials, Vol. 9, No. 9 pp. 1803027, (2019).
  5. T. Cai, X. Liu, J. Ju, H. Lin, H. Ruan, X. Xu, S. Lu, Y. Li, "Flexible cellulose/collagen/graphene oxide based triboelectric nanogenerator for self-powered cathodic protection," Materials Letters, Vol. 306, (2022).
  6. P. Qi, T. Zhang, J. Shao, B. Yang, T. Fei, R. Wang, "A QCM humidity sensor constructed by graphene quantum dots and chitosan composites", Sensors and Actuators A: Physical, Vol. 287, pp. 93-101, (2019). https://doi.org/10.1016/j.sna.2019.01.009
  7. J. Wu, S. Han, T. Yang, Z. Li, Z. Wu, X. Gui, K. Tao, J. Miao, L. K. Norford, C. Liu, and F. Huo, "Highly Stretchable Transparent Thermistor Based on Self-Healing Double Network Hydrogel", ACS Applied Materials and Interfaces, Vol. 10, No. 22 pp. 19097-19105, (2018). https://doi.org/10.1021/acsami.8b03524
  8. J. Dai, H. Zhao, X. Lin, S. Liu, Y. Liu, X. Liu, T. Fei, T. Zhang, "Ultrafast Response Polyelectrolyte Humidity Sensor for Respiration Monitoring", ACS Applied Materials and Interfaces, Vol. 11, No. 6 pp. 6483-6490, (2019). https://doi.org/10.1021/acsami.8b18904
  9. M. Singh, A. Sheetal, H. Singh, R. S. Sawhney, J. Kaur, "Animal Hair-Based Triboelectric Nanogenerator (TENG): A Substitute for the Positive Polymer Layer in TENG," Journal of Electronic Materials, Vol. 49, No. 5 pp. 3409-3416, (2020). https://doi.org/10.1007/s11664-020-08031-y
  10. K. Jiang, T. Fei, F. Jiang, G. Wang, T. Zhang, "A dew sensor based on modified carbon black and polyvinyl alcohol composites", Sensors and Actuators B: Chemical, Vol. 192, pp. 658-663, (2014). https://doi.org/10.1016/j.snb.2013.11.004
  11. X. He, X. Mu, Q. Wen, Z. Wen, J. Yang, C. Hu, H. Shi X, "Flexible and transparent triboelectric nanogenerator based on high performance well-ordered porous PDMS dielectric film", Nano Research, Vol. 9, No. 12 pp. 3714-3724, (2016). https://doi.org/10.1007/s12274-016-1242-3
  12. Z. Saadatnia, S. G. Mosanenzadeh, E. Esmailzadeh, H. E. Naguib, "A High Performance Triboelectric Nanogenerator Using Porous Polyimide Aerogel Film", Scientific Reports, Vol. 9, No. 1 pp. 1370, (2019).
  13. H. Y. Mi, X. Jing, Z. Cai, Y. Liu, L. S. Turng, S. Gong, "Highly porous composite aerogel based triboelectric nanogenerators for high performance energy generation and versatile self-powered sensing", Nanoscale, Vol. 10, No. 48 pp. 23131-23140, (2018). https://doi.org/10.1039/C8NR05872E
  14. D. Tantraviwat, M. Ngamyingyoud, W. Sripumkhai, P. Pattamang, G. Rujijanagul, B. Inceesungvorn, "Tuning the Dielectric Constant and Surface Engineering of a BaTiO3 /Porous PDMS Composite Film for Enhanced Triboelectric Nanogenerator Output Performance", ACS Omega, Vol. 6, No. 44 pp. 29765-29773, (2021). https://doi.org/10.1021/acsomega.1c04222
  15. J. H. Zhang, Y. Li, J. Du, X. Hao, Q. Wang, "Bio-inspired hydrophobic/ cancellous/hydrophilic Trimurti PVDF mat-based wearable triboelectric nanogenerator designed by self-assembly of electro-pore-creating", Nano Energy, Vol. 61, pp. 486 -495, (2019). https://doi.org/10.1016/j.nanoen.2019.04.065
  16. V. T. Bui, J. H. Oh, J. N. Kim, Q. Zhou, D. P. Huynh, I. K. Oh, "Nest-inspired nanosponge-Cu woven mesh hybrid for ultrastable and high-power triboelectric nanogenerator", Nano Energy, Vol. 71, pp. 104561, (2020).
  17. Q. Zheng, L. Fang, H. Guo, K. Yang, Z. Cai, M. A. B. Meador, S. Gong, "Highly Porous Polymer Aerogel Film-Based Triboelectric Nanogenerators", Advanced Functional Materials, Vol. 28, No. 13 pp. 1706365, (2018).
  18. W. Joo, M. S. Park, J. K. Kim, "Block copolymer film with sponge-like nanoporous strucutre for antireflection coating", Langmuir, Vol. 22, No. 19 pp. 7960-7963, (2006). https://doi.org/10.1021/la061441k
  19. B. Yu, H. Yu, T. Huang, H. Wang, M. Zhu, "A biomimetic nanofiber-based triboelectric nanogenerator with an ultrahigh transfer charge density", Nano Energy, Vol. 48, pp. 464-470, (2018). https://doi.org/10.1016/j.nanoen.2018.03.064
  20. M. Sahu, V. Vivekananthan, S. Hajra, K. Khatua, S. J. Kim, "Porosity modulated piezo-triboelectric hybridized nanogenerator for sensing small energy impacts", Applied Materials Today, Vol. 22, pp.100900, (2020).
  21. Z. Bai, Y. Xu, Z. Zhang, J. Zhu, C. Gao, Y. Zhang, H. Jia, J. Guo, "Highly flexible, porous electroactive biocomposite as attractive tribopositive material for advancing high-performance triboelectric nanogenerator", Nano Energy, Vol. 75, (2020).
  22. A. Alvarez-Fernandez, F. Valdes-Bango, R. Losada-Ambrinos, J. I. Martin, M. Velez, J. M. Alameda, F. Javier G. Alonso, "Polymer porous thin films obtained by direct spin coating", Polymer International, Vol. 67, No. 4 pp. 393-398, (2018). https://doi.org/10.1002/pi.5519