DOI QR코드

DOI QR Code

대기압 플라즈마 제트를 이용한 실버페이스트 전극의 표면처리

Surface treatment of silver-paste electrode by atmospheric-pressure plasma-jet

  • Sheik Abdur Rahman (Department of Electronic Engineering, Jeju National University) ;
  • Shenawar Ali Khan (Department of Electronic Engineering, Jeju National University) ;
  • Yunsook Yang (Department of Electronic Engineering, Jeju National University) ;
  • Woo Young Kim (Department of Electronic Engineering, Jeju National University)
  • 투고 : 2022.12.07
  • 심사 : 2023.02.23
  • 발행 : 2023.02.28

초록

실버 페이스트는 상대적으로 낮은 열처리로 공정이 가능하기 때문에 전자 소자 응용분야에서 유용한 전극 재료이다. 본 연구에서는 은 페이스트 전극에 대기압 플라즈마 제트를 이용하여 전극 표면을 처리 했다. 이 플라즈마 제트는 11.5 kHz 작동 주파수에서 5.5 ~ 6.5 kV의 고전압을 사용하여 아르곤 분위기에서 생성되었다. 플라즈마 제트는 대기압에서 수행함으로써 인쇄 공정에 더 유용할 수 있다. 플라즈마 처리시간, 인가된 전압, 가스유량에 따라 전극의 표면은 빠르게 친수성화 되었으며 접촉각의 변화가 관찰되었다. 또한, 대면적 샘플에서 플라즈마 처리 후 접촉각의 편차가 없었는데, 이는 기판의 크기에 관계없이 균일한 결과를 얻을 수 있었다는 것을 의미한다. 본 연구의 결과는 대면적 전자소자의 제조 및 향후 응용 분야에서 적층 구조를 형성하는데 매우 유용할 것으로 기대된다.

Silver paste is a valuable electrode material for electronic device applications because it is easy to handle with relatively low heat treatment. This study treated the electrode surface using an atmospheric-pressure plasma jet on the silver-paste electrode. This plasma jet was generated in an argon atmosphere using a high voltage of 5.5 to 6.5 kV with an operating frequency of 11.5 kHz. Plasma-jet may be more beneficial to the printing process by performing it at atmospheric pressure. The electrode surface becomes hydrophilic quickly and contact angle variation is observed on the electrode surface as a function of plasma treatment time, applied voltage, and gas flow rate. Also, there was no deviation in the contact angle after the plasma treatment in the large-area sample, that means a uniform result could be obtained regardless of the substrate size. The outcomes of this study are expected to be very useful in forming a stacked structure in the manufacture of large-area electronic devices and future applications.

키워드

과제정보

This work was supported by National Research Foundation of Korea (NRF) grant funded by the Korea Government (Ministry of Science and ICT) (NRF- 2021R1A4A2000934, 2021R1F1A1062800).

참고문헌

  1. T. Wang, K. Lu, Z. Xu, Z. Lin, H. Ning, T. Qiu, Z. Yang, H. Zheng, R. Yao, and J. Peng, "Recent developments in flexible transparent electrode", Crystals, Vol. 11, No. 5, pp.511(1-22) (2021).  https://doi.org/10.3390/cryst11050511
  2. J. Zhi, W. Zhao, X. Liu, A. Chen, Z. Liu, and F. Huang, "Highly conductive ordered mesoporous carbon based electrodes decorated by 3D graphene and 1D silver nanowire for flexible supercapacitor", Adv. Funct. Mater., Vol. 24, No. 14, pp. 2013 -2019, (2014).  https://doi.org/10.1002/adfm.201303082
  3. A. Chen and S. Chatterjee, "Nanomaterials based electrochemical sensors for biomedical applications", Chem. Soc. Rev., Vol. 42, No. 12, pp. 5425-5438, (2013).  https://doi.org/10.1039/c3cs35518g
  4. Y. Feng, K. Kim, C. A. Nemitz, P. Kim, T. Pfadler, M. Gerigk, S. Polarz, J. A. Dorman, J. Weickert and L. Schmidt-Mende, "Uniform large-area free-standing silver nanowire arrays on transparent conducting substrates", Electrochem. Soc., Vol. 163, No. 8, pp. D447-D452, (2016).  https://doi.org/10.1149/2.1141608jes
  5. P. I. Dolez, Chapter 1.1, ''Nanomaterials definitions, classifications, and applications", Nanoengineering, Elsevier, Pages 3-40, (2015). 
  6. K. L. Johnson, K. Kendall and A. D. Roberts, "Surface energy and the contact of elastic solids", Proc. R. Soc. London, Vol. 389, No. 1797, pp. 379-403, (2017). 
  7. M. E. Callow and R. L. Fletcher, "The influence of low surface energy materials on bioadhesion - a review", Int. Biodeterior. Biodegrad., Vol. 34, No. 3-4, pp. 333-348, (1994).  https://doi.org/10.1016/0964-8305(94)90092-2
  8. C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, "Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices", Appl. Phys. Lett., Vol. 70, No. 11, pp. 1348-1350, (1997).  https://doi.org/10.1063/1.118575
  9. K. Efimenko, W. E. Wallace, and J. Genzer, "Surface modification of Sylgard-184 polydimethylsiloxane networks by ultraviolet and ultraviolet/ozone treatment", J. Colloid Interface Sci., Vol. 254, No. 2, pp. 306-315, (2002).  https://doi.org/10.1006/jcis.2002.8594
  10. J. Liu, L. He, L. Wang, Y. Man, L. Huang, Z. Xu, D. Ge, J. Li, C. Liu, and L. Wang, "Significant enhancement of the adhesion between metal films and polymer substrates by UV-ozone surface modification in nanoscale", ACS Appl. Mater. Interfaces, Vol. 8, No. 44, pp. 30576-30582, (2016).  https://doi.org/10.1021/acsami.6b09930
  11. M. C. Kim, S. H. Yang, J. H. Boo, and J. G. Han, "Surface treatment of metals using an atmospheric pressure plasma jet and their surface characteristics", Surf. Coatings Technol., Vol. 174, pp. 839-844, (2003).  https://doi.org/10.1016/S0257-8972(03)00560-7
  12. F. Lisco1, A. Abbas, B. Maniscalco, P. M. Kaminski, M. Losurdo, K. Bass, G. Claudio, and J. M. Walls, "Pinhole free thin film CdS deposited by chemical bath using a substrate reactive plasma treatment", J. Renew. Sustain. Energy, Vol. 6, No. 1, (2014). 
  13. N. E. Richey, C. De Paula, and S. F. Bent, "Understanding chemical and physical mechanisms in atomic layer deposition", J. Chem. Phys., Vol. 152, No. 4, (2020). 
  14. H. Y. Lee, J. W. Ok, H. J. Lee, G. C. Kim, and H. J. Lee, "Surface treatment of a titanium implant using a low temperature atmospheric pressure plasma jet", Appl. Sci. Converg. Technol., Vol. 25, No. 3, pp. 51-55, (2016).  https://doi.org/10.5757/ASCT.2016.25.3.51
  15. Y. Yang, S. Kim, and W. Y. Kim, "Effect of ozone treatment on ferroelectric polymer film", Mol. Cryst. Liq. Cryst., Vol. 704, No. 1, pp. 119-124, (2020).  https://doi.org/10.1080/15421406.2020.1741811
  16. N. Bahrami, S. K. Nouri, H. Mahdavi, M. Ghiaci, R. Mokhtari, "Low-pressure plasma surface modification of polyurethane films with chitosan and collagen biomolecules", J. Appl. Polym. Sci., Vol. 136, No. 21, pp. 47567(1-10), (2019).  https://doi.org/10.1002/app.47567
  17. R. Wolf, A. C. Sparavigna, "Role of plasma surface treatments on wetting and adhesion", Engineering, Vol.2, No. 06, pp. 397-402, (2010).  https://doi.org/10.4236/eng.2010.26052
  18. Feitor, M. Cequeira, C. A. Junior, C. M. Bezerra, R. R. M. de Sousa, and T. H. de Carvalho Costa. "Evaluation of aging in air of poly (ethylene terephthalat) in oxygen plasma", Materials Research, Vol. 18, No. 5, pp. 891-896, (2015).  https://doi.org/10.1590/1516-1439.305814
  19. L. Agudo, Veronica, M. H. Oliva, M. Amparo. G. Moreno, and M. L. Gonzalez-Martin, "Effect of plasma treatment on the surface properties of polylactic acid films", Polymer Testing, Vol. 96, pp. 107097(1-8), (2021). https://doi.org/10.1016/j.polymertesting.2021.107097