DOI QR코드

DOI QR Code

Development of Motion Recognition and Real-time Positioning Technology for Radiotherapy Patients Using Depth Camera and YOLOAddSeg Algorithm

뎁스카메라와 YOLOAddSeg 알고리즘을 이용한 방사선치료환자 미세동작인식 및 실시간 위치보정기술 개발

  • Ki Yong Park (Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University) ;
  • Gyu Ha Ryu (Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Research Institute for Future Medicine, Samsung Medical Center)
  • 박기용 (성균관대학교 삼성융합의과학원 의료기기산업학과 ) ;
  • 류규하 (성균관대학교 삼성융합의과학원 의료기기산업학과, 삼성서울병원 미래의학연구원)
  • Received : 2023.04.07
  • Accepted : 2023.04.19
  • Published : 2023.04.30

Abstract

The development of AI systems for radiation therapy is important to improve the accuracy, effectiveness, and safety of cancer treatment. The current system has the disadvantage of monitoring patients using CCTV, which can cause errors and mistakes in the treatment process, which can lead to misalignment of radiation. Developed the PMRP system, an AI automation system that uses depth cameras to measure patient's fine movements, segment patient's body into parts, align Z values of depth cameras with Z values, and transmit measured feedback to positioning devices in real time, monitoring errors and treatments. The need for such a system began because the CCTV visual monitoring system could not detect fine movements, Z-direction movements, and body part movements, hindering improvement of radiation therapy performance and increasing the risk of side effects in normal tissues. This study could provide the development of a field of radiotherapy that lags in many parts of the world, along with the economic and social importance of developing an independent platform for radiotherapy devices. This study verified its effectiveness and efficiency with data through phantom experiments, and future studies aim to help improve treatment performance by improving the posture correction mechanism and correcting left and right up and down movements in real time.

Keywords

References

  1. Xu W, Wang C, Ma Y, Fang C, Gong H, Zhang G. Advances in magnetic resonance imaging guided radiation therapy. Journal of Biomedical Engineering. 2021;38(1):161-8.
  2. Zhang W, Huang H, Sun Y, Wu X. AgriPest-YOLO: A rapid light-trap agricultural pest detection method based on deep learning. Front Plant Sci. 2022;13:1079384.
  3. Yan B, Li J, Yang Z, Zhang X, Hao X. AIE-YOLO: Auxiliary Information Enhanced YOLO for Small Object Detection. Sensors (Basel). 2022;22(21).
  4. Liang E, Dolan JL, Morris ED, Vono J, Bazan LF, Lu M. Application of Continuous Positive Airway Pressure for Thoracic Respiratory Motion Management: An Assessment in a Magnetic Resonance Imaging-Guided Radiation Therapy Environment. Adv Radiat Oncol. 2022;7(3):100889.
  5. Wu B, He J, Fu J, Ruan C. [Application of Imaging-Guided Radiation Therapy in Pelvic Tumor Radiotherapy]. Zhongguo Yi Liao Qi Xie Za Zhi. 2015;39(4):299-301.
  6. Chen K, Li H, Li C, Zhao X, Wu S, Duan Y. An Automatic Defect Detection System for Petrochemical Pipeline Based on Cycle-GAN and YOLO v5. Sensors (Basel). 2022;22(20).
  7. Qiu RZ, Chen SP, Chi MX, Wang RB, Huang T, Fan GC. An automatic identification system for citrus greening disease (Huanglongbing) using a YOLO convolutional neural network. Front Plant Sci. 2022;13:1002606.
  8. Wang Y, Guo W, Zhao S, Xue B, Zhang W, Xing Z. A Big Coal Block Alarm Detection Method for Scraper Conveyor Based on YOLO-BS. Sensors (Basel). 2022;22(23).
  9. C. Hehakaya AMS, J.R.N. van der Voort Van Zijp. C. Hehakaya, A.M. Sharma, J.R.N. van der Voort Van Zijp. Implementation of Magnetic Resonance Imaging-Guided Radiation Therapy in Routine Care: Opportunities and Challenges in the United States. Adv Radiat Oncol. 2022;7:100953. Adv Radiat Oncol. 2022;7(5):101049.
  10. Li Y, Sun Y, Cao T, Su Q, Li Z, Huang M. A cation-exchange controlled core-shell MnS@Bi(2)S(3) theranostic platform for multimodal imaging guided radiation therapy with hyperthermia boost. Nanoscale. 2017;9(38):14364-75. https://doi.org/10.1039/C7NR02384G
  11. Dyk P, Jiang N, Sun B, DeWees TA, Fowler KJ, Narra V. Cervical gross tumor volume dose predicts local control using magnetic resonance imaging/diffusion-weighted imaging-guided high-dose-rate and positron emission tomography/computed tomography-guided intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2014;90(4):794-801. https://doi.org/10.1016/j.ijrobp.2014.07.039
  12. Nguyen HV, Bae JH, Lee YE, Lee HS, Kwon KR. Comparison of Pre-Trained YOLO Models on Steel Surface Defects Detector Based on Transfer Learning with GPU-Based Embedded Devices. Sensors (Basel). 2022;22(24).
  13. Kesner A, Pan T, Zaidi H. Data-driven motion correction will replace motion-tracking devices in molecular imaging-guided radiation therapy treatment planning. Med Phys. 2018.
  14. Song JY, Chie EK, Kang SH, Jeon YJ, Ko YA, Kim DY. Dosimetric evaluation of magnetic resonance imaging-guided adaptive radiation therapy in pancreatic cancer by extent of re-contouring of organs-at-risk. Radiat Oncol J. 2022;40(4):242-50. https://doi.org/10.3857/roj.2022.00332
  15. Kishan AU, Cao M, Mikaeilian AG, Low DA, Kupelian PA, Steinberg ML. Dosimetric feasibility of magnetic resonance imaging-guided tri-cobalt 60 preoperative intensity modulated radiation therapy for soft tissue sarcomas of the extremity. Pract Radiat Oncol. 2015;5(5):350-6. https://doi.org/10.1016/j.prro.2015.01.007
  16. Al-Batat R, Angelopoulou A, Premkumar S, Hemanth J, Kapetanios E. An End-to-End Automated License Plate Recognition System Using YOLO Based Vehicle and License Plate Detection with Vehicle Classification. Sensors (Basel). 2022;22(23).
  17. Zhang R, Ma R. Facial expression recognition method based on PSA-YOLO network. Front Neurorobot. 2022;16:1057983.
  18. Kishan AU, Cao M, Wang PC, Mikaeilian AG, Tenn S, Rwigema JM. Feasibility of magnetic resonance imaging-guided liver stereotactic body radiation therapy: A comparison between modulated tri-cobalt-60 teletherapy and linear accelerator-based intensity modulated radiation therapy. Pract Radiat Oncol. 2015;5(5):330-7. https://doi.org/10.1016/j.prro.2015.02.014
  19. Huang P, Bao L, Zhang C, Lin J, Luo T, Yang D. Folic acidconjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials. 2011;32(36):9796-809. https://doi.org/10.1016/j.biomaterials.2011.08.086
  20. Oztel I, Yolcu Oztel G, Akgun D. A hybrid LBP-DCNN based feature extraction method in YOLO: An application for masked face and social distance detection. Multimed Tools Appl. 2023;82(1):1565-83.  https://doi.org/10.1007/s11042-022-14073-7
  21. Hehakaya C, Sharma AM, van der Voort Van Zijp JRN, Grobbee DE, Verkooijen HM, Izaguirre EW. Implementation of Magnetic Resonance Imaging-Guided Radiation Therapy in Routine Care: Opportunities and Challenges in the United States. Adv Radiat Oncol. 2022;7(5):100953.
  22. Prins FM, Stemkens B, Kerkmeijer LGW, Barendrecht MM, de Boer HJ, Vonken EPA. Intrafraction Motion Management of Renal Cell Carcinoma With Magnetic Resonance Imaging-Guided Stereotactic Body Radiation Therapy. Pract Radiat Oncol. 2019;9(1):e55-e61. https://doi.org/10.1016/j.prro.2018.09.002
  23. Pathmanathan AU, van As NJ, Kerkmeijer LGW, Christodouleas J, Lawton CAF, Vesprini D. Magnetic Resonance Imaging-Guided Adaptive Radiation Therapy: A "Game Changer" for Prostate Treatment? Int J Radiat Oncol Biol Phys. 2018;100(2):361-73. https://doi.org/10.1016/j.ijrobp.2017.10.020
  24. Dincer N, Ugurluer G, Gungor G, Zoto Mustafayev T, Atalar B, Ozyar E. Magnetic Resonance Imaging-Guided Radiation Therapy for Early-Stage Gastric Mucosa-Associated Lymphoid Tissue Lymphoma. Cureus. 2022;14(9):e29035.
  25. Vanhove C, Goethals I. Magnetic resonance imaging-guided radiation therapy using animal models of glioblastoma. Br J Radiol. 2019;92(1095):20180713.
  26. van Herk M, McWilliam A, Dubec M, Faivre-Finn C, Choudhury A. Magnetic Resonance Imaging-Guided Radiation Therapy: A Short Strengths, Weaknesses, Opportunities, and Threats Analysis. Int J Radiat Oncol Biol Phys. 2018;101(5):1057-60. https://doi.org/10.1016/j.ijrobp.2017.11.009
  27. Oelfke U. Magnetic Resonance Imaging-guided Radiation Therapy: Technological Innovation Provides a New Vision of Radiation Oncology Practice. Clin Oncol (R Coll Radiol). 2015;27(9):495-7. https://doi.org/10.1016/j.clon.2015.04.004
  28. Paganelli C, Seregni M, Fattori G, Summers P, Bellomi M, Baroni G. Magnetic resonance imaging-guided versus surrogate-based motion tracking in liver radiation therapy: a prospective comparative study. Int J Radiat Oncol Biol Phys. 2015;91(4):840-8. https://doi.org/10.1016/j.ijrobp.2014.12.013
  29. Zaidi H, Vees H, Wissmeyer M. Molecular PET/CT imaging-guided radiation therapy treatment planning. Acad Radiol. 2009;16(9):1108-33. https://doi.org/10.1016/j.acra.2009.02.014
  30. Wang J, Tan X, Pang X, Liu L, Tan F, Li N. MoS2 Quantum Dot@Polyaniline Inorganic-Organic Nanohybrids for in Vivo Dual-Modal Imaging Guided Synergistic Photothermal/Radiation Therapy. ACS Appl Mater Interfaces. 2016;8(37):24331-8. https://doi.org/10.1021/acsami.6b08391
  31. Lang X, Ren Z, Wan D, Zhang Y, Shu S. MR-YOLO: An Improved YOLOv5 Network for Detecting Magnetic Ring Surface Defects. Sensors (Basel). 2022;22(24).
  32. Gunduz MS, Isik G. A new YOLO-based method for realtime crowd detection from video and performance analysis of YOLO models. J Real Time Image Process. 2023;20(1):5.
  33. Hsieh CC, Hsu TY, Huang WH. An Online Rail Track Fastener Classification System Based on YOLO Models. Sensors (Basel). 2022;22(24).
  34. Shi J, Udayakumar TS, Wang Z, Dogan N, Pollack A, Yang Y. Optical molecular imaging-guided radiation therapy part 1: Integrated x-ray and bioluminescence tomography. Med Phys. 2017;44(9):4786-94. https://doi.org/10.1002/mp.12415
  35. Shi J, Udayakumar TS, Wang Z, Dogan N, Pollack A, Yang Y. Optical molecular imaging-guided radiation therapy part 2: Integrated x-ray and fluorescence molecular tomography. Med Phys. 2017;44(9):4795-803. https://doi.org/10.1002/mp.12414
  36. Vittrup AS, Kirchheiner K, Potter R, Fokdal LU, Jensen NBK, Spampinato S. Overall Severe Morbidity After Chemo-Radiation Therapy and Magnetic Resonance Imaging-Guided Adaptive Brachytherapy in Locally Advanced Cervical Cancer: Results From the EMBRACE-I Study. Int J Radiat Oncol Biol Phys. 2023.
  37. Tetar S, Bruynzeel A, Bakker R, Jeulink M, Slotman BJ, Oei S. Patient-reported Outcome Measurements on the Tolerance of Magnetic Resonance Imaging-guided Radiation Therapy. Cureus. 2018;10(2):e2236.
  38. Zhang Y, Paulson E, Lim S, Hall WA, Ahunbay E, Mickevicius NJ. A Patient-Specific Autosegmentation Strategy Using Multi-Input Deformable Image Registration for Magnetic Resonance Imaging-Guided Online Adaptive Radiation Therapy: A Feasibility Study. Adv Radiat Oncol. 2020;5(6):1350-8. https://doi.org/10.1016/j.adro.2020.04.027
  39. Kothary N, Dieterich S, Louie JD, Chang DT, Hofmann LV, Sze DY. Percutaneous implantation of fiducial markers for imaging-guided radiation therapy. AJR Am J Roentgenol. 2009;192(4):1090-6.  https://doi.org/10.2214/AJR.08.1399