DOI QR코드

DOI QR Code

Validation of Satellite Altimeter-Observed Significant Wave Height in the North Pacific and North Atlantic Ocean (1992-2016)

북태평양과 북대서양에서의 위성 고도계 관측 유의파고 검증 (1992-2016)

  • Hye-Jin Woo (Department of Earth Science Education, Seoul National University) ;
  • Kyung-Ae Park (Department of Earth Science Education, Seoul National University)
  • 우혜진 (서울대학교 지구과학교육과) ;
  • 박경애 (서울대학교 지구과학교육과)
  • Received : 2023.04.18
  • Accepted : 2023.04.27
  • Published : 2023.04.30

Abstract

Satellite-observed significant wave heights (SWHs), which are widely used to understand the response of the ocean to climate change, require long-term and continuous validation. This study examines the accuracy and error characteristics of SWH observed by nine satellite altimeters in the North Pacific and North Atlantic Ocean for 25 years (1992-2016). A total of 137,929 matchups were generated to compare altimeter-observed SWH and in-situ measurements. The altimeter SWH showed a bias of 0.03 m and a root mean square error (RMSE) of 0.27 m, indicating relatively high accuracy in the North Pacific and North Atlantic Ocean. However, the spatial distribution of altimeter SWH errors showed notable differences. To better understand the error characteristics of altimeter-observed SWH, errors were analyzed with respect to in-situ SWH, time, latitude, and distance from the coast. Overestimation of SWH was observed in most satellite altimeters when in-situ SWH was low, while underestimation was observed when in-situ SWH was high. The errors of altimeter-observed SWH varied seasonally, with an increase during winter and a decrease during summer, and the variability of errors increased at higher latitudes. The RMSEs showed high accuracy of less than 0.3 m in the open ocean more than 100 km from the coast, while errors significantly increased to more than 0.5 m in coastal regions less than 15 km. These findings underscore the need for caution when analyzing the spatio-temporal variability of SWH in the global and regional oceans using satellite altimeter data.

인공위성 관측 유의파고는 기후변화에 대한 해양의 반응을 이해하는데 널리 활용되므로 장기간의 지속적인 검증이 필요하다. 본 연구에서는 1992년부터 2016년까지 25년 동안 북태평양과 북대서양에서 9종의 인공위성 고도계 관측 유의파고의 정확도를 평가하고 오차 특성을 분석하였다. 위성 고도계와 부이 관측 유의파고 자료를 비교 분석하기 위하여 137,929개의 위성-실측 유의파고 일치점 자료를 생성하였다. 북태평양과 북대서양에서 위성 고도계 유의파고는 0.03 m의 편차와 0. 27 m의 평균제곱근오차를 보여 비교적 높은 정확도로 관측되고 있음을 확인하였다. 그러나 위성 고도계 유의파고는 지역적인 해역 특성에 따라 오차의 공간 분포 특성이 상이하였다. 실측 유의파고에 따른 오차, 위도별 오차의 계절분포 및 연안으로부터 거리에 따른 오차를 분석하여 오차 요인을 파악하고자 하였다. 대부분의 위성에서 실측 유의파고가 낮을 때 과대추정되었으며 실측 유의파고가 높을 때 과소추정되는 경향이 나타났다. 고도계 유의파고의 오차는 겨울철에 증가되고 여름철에 감소되는 뚜렷한 계절변화를 보였으며 고위도로 갈수록 변동성이 증폭되었다. 연안으로부터 거리에 따른 평균제곱근오차는 100 km 이상의 외해에서는 0. 3 m 이하로 높은 정확도를 보인 반면 15 km 이내의 연안에서는 오차가 0. 5 m 이상으로 현저하게 증가하였다. 본 연구의 결과는 인공위성 고도계 자료를 활용하여 전구 및 지역적인 해역에서 유의파고의 시공간 변동성 분석 시 각별한 주의가 필요함을 시사한다.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(No. 2020R1A2C2009464, RS-2023-00208935).

References

  1. Abdalla, S., Janssen, P.A., and Bidlot, J.R., 2010. Jason-2 OGDR wind and wave products: Monitoring, validation and assimilation. Marine Geodesy, 33(S1), 239-255. https://doi.org/10.1080/01490419.2010.487798
  2. Ardhuin, F., Collard, F., Chapron, B., Girard-Ardhuin, F., Guitton, G., Mouche, A., and Stopa, J. E., 2015. Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A. Geophysical Research Letters, 42(7), 2317-2325. https://doi.org/10.1002/2014GL062940
  3. Ardhuin, F., Stopa, J.E., Chapron, B., Collard, F., Husson, R., Jensen, R.E., and Young, I., 2019. Observing sea states. Frontiers in Marine Science, 124.
  4. Bauer, E., Hasselmann, S., Hasselmann, K., and Graber, H.C., 1992. Validation and assimilation of Seasat altimeter wave heights using the WAM wave model. Journal of Geophysical Research: Oceans, 97(C8), 12671-12682. https://doi.org/10.1029/92JC01056
  5. Breivik, L.A., and Reistad, M., 1994. Assimilation of ERS-1 altimeter wave heights in an operational numerical wave model. Weather and Forecasting, 9(3), 440-451. https://doi.org/10.1175/1520-0434(1994)009<0440:AOAWHI>2.0.CO;2
  6. Brown, G., 1977. The average impulse response of a rough surface and its applications. IEEE transactions on antennas and propagation, 25(1), 67-74. https://doi.org/10.1109/TAP.1977.1141536
  7. Callahan, P.S., and Rodriguez, E., 2004. Retracking of Jason-1 data. Marine Geodesy, 27(3-4), 391-407. https://doi.org/10.1080/01490410490902098
  8. Dobson, E., Monaldo, F., Goldhirsh, J., and Wilkerson, J., 1987. Validation of Geosat altimeter-derived wind speeds and significant wave heights using buoy data. Journal of Geophysical Research: Oceans, 92(C10), 10719-10731. https://doi.org/10.1029/JC092iC10p10719
  9. Ebuchi, N., and Kawamura, H., 1994. Validation of wind speeds and significant wave heights observed by the TOPEX altimeter around Japan. Journal of Oceanography, 50, 479-487. https://doi.org/10.1007/BF02234969
  10. Fu, L.L., Christensen, E.J., Yamarone Jr, C.A., Lefebvre, M., Menard, Y., Dorrer, M., and Escudier, P., 1994. TOPEX/POSEIDON mission overview. Journal of Geophysical Research: Oceans, 99(C12), 24369-24381. https://doi.org/10.1029/94JC01761
  11. Gommenginger, C., Thibaut, P., Fenoglio-Marc, L., Quartly, G., Deng, X., Gomez-Enri, J., ... & Gao, Y. (2011). Retracking altimeter waveforms near the coasts: A review of retracking methods and some applications to coastal waveforms. Coastal altimetry, 61-101.
  12. Gower, J.F.R., 1996. Intercalibration of wave and wind data from TOPEX/POSEIDON and moored buoys off the west coast of Canada. Journal of Geophysical Research: Oceans, 101(C2), 3817-382
  13. Greenslade, D.J.M., 2001. The assimilation of ERS-2 significant wave height data in the Australian region. Journal of Marine Systems, 28(1-2), 141-160. https://doi.org/10.1016/S0924-7963(01)00005-7
  14. Gulev, S.K., Grigorieva, V., Sterl, A., and Woolf, D., 2003. Assessment of the reliability of wave observations from voluntary observing ships: Insights from the validation of a global wind wave climatology based on voluntary observing ship data. Journal of Geophysical Research: Oceans, 108(C7).
  15. Hayne, G., 1980. Radar altimeter mean return waveforms from near-normal-incidence ocean surface scattering. IEEE Transactions on Antennas and Propagation, 28(5), 687-692. https://doi.org/10.1109/TAP.1980.1142398
  16. Kossin, J.P., Knapp, K.R., Olander, T.L., and Velden, C.S., 2020, Global increase in major tropical cyclone exceedance probability over the past four decades. Proceedings of the National Academy of Sciences, 117(22), 11975-11980, doi: 10.1073/pnas.1920849117.
  17. Lionello, P., Gunther, H., and Janssen, P.A., 1992. Assimilation of altimeter data in a global third-generation wave model. Journal of Geophysical Research: Oceans, 97(C9), 14453-14474. https://doi.org/10.1029/92JC01055
  18. Liu, Q., Lewis, T., Zhang, Y., and Sheng, W., 2015. Performance assessment of wave measurements of wave buoys. International Journal of Marine Energy, 12, 63-76. https://doi.org/10.1016/j.ijome.2015.08.003
  19. National Data Buoy Center, 2009. Handbook of Automated Data Quality Control Checks and Procedures.
  20. Nencioli, F., and Quartly, G.D., 2019. Evaluation of Sentinel-3A wave height observations near the coast of southwest England. Remote Sensing, 11(24), 2998.
  21. Passaro, M., Cipollini, P., Vignudelli, S., Quartly, G.D., and Snaith, H.M., 2014. ALES: A multi-mission adaptive subwaveform retracker for coastal and open ocean altimetry. Remote Sensing of Environment, 145, 173-189. https://doi.org/10.1016/j.rse.2014.02.008
  22. Picot, N., Marechal, C., Couhert, A., Desai, S., Scharroo, R., and Egido, A., 2018. Jason-3 products handbook. SALP-MU-M-OP-16118-CN, 1(5), 28-31.
  23. Queffeulou, P., 2003. Long-term quality status of wave height and wind speed measurements from satellite altimeters. In The Thirteenth International Offshore and Polar Engineering Conference.
  24. Queffeulou, P., 2004. Long-term validation of wave height measurements from altimeters. Marine Geodesy, 27(3-4), 495-510. https://doi.org/10.1080/01490410490883478
  25. Queffeulou, P., 2013. Merged altimeter wave height data base. An update. In Proceedings of ESA Living Planet Symposium (Vol. 722).
  26. Queffeulou, P., and Croize-Fillon, D., 2017. Global altimeter SWH data set-February 2017. User Guide, Laboratoire d'Oceanographie Spatiale, Ifremer.
  27. Resti, A., Benveniste, J., Roca, M., Levrini, G., and Johannessen, J., 1999. The Envisat radar altimeter system (RA-2). ESA bulletin, 98(8), 94-101.
  28. Seneviratne, S.I. et al., 2021. Weather and Climate Extreme Events in a Changing Climate. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Masson-Delmotte, V. et al.), Cambridge University Press.
  29. Sepulveda, H.H., Queffeulou, P., and Ardhuin, F., 2015. Assessment of SARAL/AltiKa wave height measurements relative to buoy, Jason-2, and Cryosat-2 data. Marine Geodesy, 38(sup1), 449-465. https://doi.org/10.1080/01490419.2014.1000470
  30. Sharmar, V.D., Markina, M.Y., and Gulev, S.K., 2021. Global ocean wind-wave model hindcasts forced by different reanalyzes: A comparative assessment. Journal of Geophysical Research: Oceans, 126(1), e2020JC016710.
  31. Skandrani, C., Lefevre, J.M., and Queffeulou, P., 2004. Impact of multisatellite altimeter data assimilation on wave analysis and forecast. Marine Geodesy, 27(3-4), 511-533. https://doi.org/10.1080/01490410490883496
  32. Stopa, J.E., and Mouche, A., 2017. Significant wave heights from S entinel-1 SAR: Validation and applications. Journal of Geophysical Research: Oceans, 122(3), 1827-1848. https://doi.org/10.1002/2016JC012364
  33. Takbash, A., Young, I.R., and Breivik, O., 2019. Global wind speed and wave height extremes derived from long-duration satellite records. Journal of Climate, 32(1), 109-126. https://doi.org/10.1175/JCLI-D-18-0520.1
  34. Thibaut, P., Ferreira, F., and Femenias, P, 2007. Sigma0 blooms in the Envisat radar altimeter data. In Envisat Symposium.
  35. Wang, J., Aouf, L., Jia, Y., and Zhang, Y., 2020. Validation and calibration of significant wave height and wind speed retrievals from HY2B altimeter based on deep learning. Remote Sensing, 12(17), 2858.
  36. Woo, H.J., and Park, K.A., 2022. Validation of significant wave height from Jason-3 and Sentinel-3A/B and relation to tidal currents in coastal regions of the Korean Peninsula. International Journal of Remote Sensing, 43(3), 961-996. https://doi.org/10.1080/01431161.2022.2026520
  37. Yang, J., and Zhang, J., 2019. Validation of Sentinel-3A/3B satellite altimetry wave heights with buoy and Jason-3 data. Sensors, 19(13), 2914.
  38. Young, I.R., and Ribal, A., 2019. Multiplatform evaluation of global trends in wind speed and wave height. Science, 364(6440), 548-552. https://doi.org/10.1126/science.aav9527
  39. Young, I.R., Sanina, E., and Babanin, A.V., 2017. Calibration and cross validation of a global wind and wave database of altimeter, radiometer, and scatterometer measurements. Journal of Atmospheric and Oceanic Technology, 34(6), 1285-1306. https://doi.org/10.1175/JTECH-D-16-0145.1
  40. Young, I.R., Zieger, S., and Babanin, A.V., 2011. Global trends in wind speed and wave height. Science, 332(6028), 451-455. https://doi.org/10.1126/science.1197219
  41. Zieger, S., Vinoth, J., and Young, I.R., 2009. Joint calibration of multiplatform altimeter measurements of wind speed and wave height over the past 20 years. Journal of Atmospheric and Oceanic Technology, 26(12), 2549-2564. https://doi.org/10.1175/2009JTECHA1303.1