DOI QR코드

DOI QR Code

Dental Surgery Simulation Using Haptic Feedback Device

햅틱 피드백 장치를 이용한 치과 수술 시뮬레이션

  • 윤상연 (인하대학교 전기컴퓨터공학과) ;
  • 성수경 (인하대학교 전기컴퓨터공학과 ) ;
  • 신병석 (인하대학교 컴퓨터공학과)
  • Received : 2022.12.20
  • Accepted : 2023.04.03
  • Published : 2023.06.30

Abstract

Virtual reality simulations are used for education and training in various fields, and are especially widely used in the medical field recently. The education/training simulator consists of tactile/force feedback generation and image/sound output hardware that provides a sense similar to a doctor's treatment of a real patient using real surgical tools, and software that produces realistic images and tactile feedback. Existing simulators are complicated and expensive because they have to use various types of hardware to simulate various surgical instruments used during surgery. In this paper, we propose a dental surgical simulation system using a force feedback device and a morphable haptic controller. Haptic hardware determines whether the surgical tool collides with the surgical site and provides a sense of resistance and vibration. In particular, haptic controllers that can be deformed, such as length changes and bending, can express various senses felt depending on the shape of various surgical tools. When the user manipulates the haptic feedback device, events such as movement of the haptic feedback device or button clicks are delivered to the simulation system, resulting in interaction between dental surgical tools and oral internal models, and thus haptic feedback is delivered to the haptic feedback device. Using these basic techniques, we provide a realistic training experience of impacted wisdom tooth extraction surgery, a representative dental surgery technique, in a virtual environment represented by sophisticated three-dimensional models.

가상 현실 시뮬레이션은 다양한 분야에서의 교육과 훈련에 활용이 되며, 특히 최근에는 의료 분야에서 많이 사용되고 있다. 교육/훈련용 시뮬레이터는 의사가 실제 수술 도구를 이용하여 실제 환자에 대해 처치를 하는 것과 같은 느낌이 나게 하는 촉감/역감 생성 및 영상/음향 출력 하드웨어와 여기에 실감 나는 영상과 촉감을 생성해주는 소프트웨어로 이루어진다. 기존의 시뮬레이터들은 수술 시에 사용되는 다양한 수술 도구들을 모사하기 위해 다양한 형태의 하드웨어들을 사용해야 하므로 복잡하고 비용이 많이 소요되는 문제가 있다. 이 논문에서는 포스 피드백 장치와 변형 가능한 햅틱 컨트롤러를 이용한 치과 수술 시뮬레이션 시스템을 제안한다. 햅틱 하드웨어들은 수술 도구와 수술 부위의 충돌 여부를 파악하고 그에 따른 저항감과 진동감을 제공한다. 특히 길이 변화, 굽힘과 같은 변형이 가능한 햅틱 컨트롤러는 여러 수술 도구들의 형태에 따라 느껴지는 다양한 감각을 표현할 수 있다. 사용자가 햅틱 피드백 장치를 조작하면 햅틱 피드백 장치의 움직임이나 버튼 클릭 등의 이벤트가 시뮬레이션 시스템에 전달되어 치과용 수술 도구와 구강 내부 모델들 사이의 상호작용이 발생하고 이에 따른 햅틱 피드백이 햅틱 피드백 장치로 전달된다. 이러한 기반 기술들을 활용하여 정교한 3차원 모델로 표현된 가상 환경에서 대표적인 치과 수술기법인 매복 사랑니 발치 수술의 현실적인 훈련 경험을 제공한다.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. NRF-2022R1A2B5B01001553 / No. NRF-2022R1A4A1033549). 이 논문은 2022년 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(No. RS-2022-00155915, 인공지능융합혁신인재양성(인하대학교)).

References

  1. J. Falah et al., "Virtual reality medical training system for anatomy education," 2014 Science and information conference, IEEE, pp.752-758, 2014.
  2. T. Mahmood, M. A. Scaffidi, R. Khan, and S. C. Grover, "Virtual reality simulation in endoscopy training: Current evidence and future directions," World Journal of Gastroenterology, Vol.24, No.48, pp.5439-5445, 2018. https://doi.org/10.3748/wjg.v24.i48.5439
  3. D. Escobar-Castillejos, J. Noguez, L. Neri, A. Magana, and B. Benes, "A review of simulators with haptic devices for medical training," Journal of Medical Systems, Vol.40, pp.1-22, 2016. https://doi.org/10.1007/s10916-015-0365-5
  4. K. B. Jin, S. Y. Kim, and I. H. Lee, "A hand-held controller with haptic feedback for virtual reality," 2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), pp.129-132, 2017.
  5. D. S. Choi, S. H. Lee, and S. Y. Kim, "Transparent and soft haptic actuator for interaction with flexible/deformable devices," IEEE Access, Vol.8, 2020.
  6. S. L. Delp, J. P. Loan, and M. G. Hoy, "An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures," IEEE Transactions on Biomedical Engineering, Vol.37, No.8, pp.757-767, 1990. https://doi.org/10.1109/10.102791
  7. R. M. Satava, "Virtual reality surgical simulator," Surgical Endoscopy, Vol.7, No.3, pp.203-205, 1993. https://doi.org/10.1007/BF00594110
  8. R. M. Satava, "Historical review of surgical simulation-a personal perspective," World Journal of Surgery, Vol.32, No.2, pp.141-148, 2008. https://doi.org/10.1007/s00268-007-9374-y
  9. S. Delorme, D. Laroche, and R. DiRaddo, "NeuroTouch: a physics-based virtual simulator for cranial microneurosurgery training," Operative Neurosurgery, Vol.71, pp.32-42, 2012. https://doi.org/10.1227/NEU.0b013e318249c744
  10. K. Endo et al., "A patient-specific surgical simulator using preoperative imaging data: An interactive simulator using a three-dimensional tactile mouse," Journal of Computational Surgery, Vol.1, p.10, 2014.
  11. K. Makiyama, M. Nagasaka, and T. Inuiya, "Development of a patient-specific simulator for laparoscopic renal surgery," International Journal of Urology, Vol.22, No.6, pp.572-576, 2015. https://doi.org/10.1111/iju.12737
  12. J. Eschweiler, J. P. Stromps, M. Fischer, F. Schick, B. Rath, N. Pallua, and K. Radermacher, "Development of a biomechanical model of the wrist joint for patient-specific model guided surgical therapy planning: Part 1," Proceedings of the Institution of Mechanical EngineersPart H: Journal of Engineering in Medicine, Vol.230, No.4, pp.310-325, 2016. https://doi.org/10.1177/0954411916632791
  13. O. Bamodu and X. M. Ye, "Virtual reality and virtual reality system components," Advanced Materials Research, Vol.765, pp.1169-1172, 2013. https://doi.org/10.4028/www.scientific.net/AMR.765-767.1169
  14. G. C. Burdea, "Haptics issues in virtual environments," In Proceedings Computer Graphics International 2000, pp.295-302, 2000.
  15. D. Wang, M. Song, and A. Naqash, "Toward whole-hand kinesthetic feedback: A survey of force feedback gloves," IEEE Transactions on Haptics, Vol.12, pp.189-204, 2019. https://doi.org/10.1109/TOH.2018.2879812
  16. C. Pacchierotti, S. Sinclair, and M. Solazzi, "Wearable haptic systems for the fingertip and the hand: taxonomy, review, and perspectives," IEEE Transactions on Haptics, Vol.10, pp.580-600, 2017. https://doi.org/10.1109/TOH.2017.2689006
  17. V. Nanjappan, H. N. Liang, F. Lu, K. Papangelis, Y. Yue, and K. L. Man, "User-elicited dual-hand interactions for manipulating 3D objects in virtual reality environments," Human-centric Computing and Information Sciences, Vol.8, No.1, pp.1-16, 2018. https://doi.org/10.1186/s13673-017-0124-3
  18. D. H. Kim, H. M. Kim, J.-S. Park, and S. W. Kim, "Virtual reality haptic simulator for endoscopic sinus and skull base surgeries," Journal of Craniofacial Surgery, Vol.31, No.6, pp.1811-1814, 2020. https://doi.org/10.1097/SCS.0000000000006395
  19. F. Wang, Y. Liu, M. Tian, Y. Zhang, S. Zhang and J. Chen, "Application of a 3D haptic virtual reality simulation system for dental crown preparation training," 2016 8th International Conference on Information Technology in Medicine and Education (ITME), pp.424-427, 2016.
  20. M. Zahiri, R. Booton, K. C. Siu, and C. A. Nelson, "Design and evaluation of a portable laparoscopic training system using virtual reality," Journal of Medical Devices, Vol.11, No.1, 2016.
  21. S. W. Han, S. K. Sung, and B. S. Shin, "Virtual reality simulation of high tibial osteotomy for medical training," Mobile Information Systems 2022, 2022.
  22. T. H. Massie and J. K. Salisbury, "The phantom haptic interface: A device for probing virtual objects," In Proceedings of the ASME Winter Annual Meeting, Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Vol.55, No.1, pp.295-300, 1994.
  23. S. Y. Ko, W. C. Bang, and S. Y. Kim, "A measurement system for 3D hand-drawn gesture with a PHANToM TM device," Journal of Information Processing Systems, Vol.6, No.3, pp.347-358, 2010. https://doi.org/10.3745/JIPS.2010.6.3.347
  24. S. Y. Yoon, S. K. Sung, and B. S. Shin, "Impacted wisdom tooth extraction simulation using haptic controllers," Proceedings of the Annual Conference of Korea Information Processing Society Conference (KIPS) 2022, Vol.29, No.2, pp.689-691, 2022.