DOI QR코드

DOI QR Code

Modelling of flange-stud-slab interactions and numerical study on bottom-flange-bolted composite-beam connections

  • Xiaoxiang Wang (School of Civil Engineering, Central South University) ;
  • Yujie Yu (School of Civil Engineering, Central South University) ;
  • Lizhong Jiang (School of Civil Engineering, Central South University) ;
  • Zhiwu Yu (National Engineering Research Center of High-speed Railway Construction Technology)
  • Received : 2022.04.13
  • Accepted : 2023.03.30
  • Published : 2023.04.25

Abstract

The composite beam connections often encountered fracture failure in the welded bottom flange joint, and a bottom flange bolted connection has been proposed to increase the deformation ability of the bottom flange joint. The seismic performance of the bottom flange bolted composite beam connection was suffered from both the composite action of concrete slab and the asymmetric load transfer mechanisms between top and bottom beam flange joints. Thus, this paper presents a comprehensive numerical study on the working mechanism of the bottom flange bolted composite beam connections. Three available modelling methods and a new modelling method on the flange-stud-slab interactions were compared. The efficient numerical modeling method was selected and then applied to the parametric study. The influence of the composite slab, the bottom flange bolts, the shear composite ratio and the web hole shape on the seismic performance of the bottom flange bolted composite beam connections were investigated. A hogging strength calculation method was then proposed based on numerical results.

Keywords

Acknowledgement

This research was sponsored by the National Natural Science Foundation of China (Grant No. 52278231), the Natural Science Foundation of Hunan (Grant No. 2022JJ20073), the Science and Technology Innovation Program of Hunan Province(2022RC1185) and the Natural Science Foundation of Changsha(kq2202100).

References

  1. AISC341 (2016), Seism. Provisions Struct. Steel Build., American Institute of Steel Construction, Chicago, IL, USA.
  2. Alsharari, F., El-Zohairy, A., Salim, H. and El-Din El-Sisi, A. (2021), "Numerical investigation of the monotonic behavior of strengthened Steel-Concrete composite girders", Eng. Struct., 246, 113081. https://doi.org/10.1016/j.engstruct.2021.113081.
  3. Amadio, C., Bedon, C. and Fasan, M. (2017), "Numerical assessment of slab-interaction effects on the behaviour of steel-concrete composite joints", J. Constr. Steel Res., 139, 397-410. https://doi.org/10.1016/j.jcsr.2017.10.003.
  4. Anandavalli, N., Madheswaran, C., Rajasankar, J. and Lakshmanan, N. (2011), "Three dimensional FE model of stud connected steel-concrete composite girders subjected to monotonic loading", Int. J. Mech. Appl., 1(1), 1-11. https://10.5923/j.mechanics.20110101.01.
  5. Bahaz, A., Amara, S. and Demonceau, J.F. (2022), "Numerical evaluation for the effective slab width of continuous composite beams", Mater. Today Proc., 58(4), 1490-1496. https://doi.org/10.1016/j.matpr.2022.03.001.
  6. Bhattacharya, S., Hyodo, M., Nikitas, G., Ismael, B., Suzuki, H., Lombardi, D., Egami, S., Watanabe, G. and Goda, K. (2018), "Geotechnical and infrastructural damage due to the 2016 Kumamoto earthquake sequence", Soil Dynam. Earthq. Eng., 104, 390-394. https://doi.org/10.1016/j.soildyn.2017.11.009.
  7. Chaboche, J.L. (2008), "A review of some plasticity and viscoplasticity constitutive theories", Int. J. Plasticity, 24(10), 1642-1693. https://doi.org/10.1016/j.ijplas.2008.03.009.
  8. Choi, S.M., Park, S.H., Yun, Y.S. and Kim, J.H. (2010), "A study on the seismic performance of concrete-filled square steel tube column-to-beam connections reinforced with asymmetric lower diaphragms", J. Constr. Steel Res., 66(7), 962-970. https://doi.org/10.1016/j.jcsr.2010.01.004.
  9. Ding, F., Zhang, C., Yu, Y., Lan, L. and Man, M. (2020), "Hysteretic behavior of post fire structural steels under cyclic loading", J. Constr. Steel Res., 167, 105847. https://doi.org/10.1016/j.jcsr.2019.105847.
  10. Ding, F.X., Liu, J., Liu, X.M., Yu, Z.W. and Li, D.W. (2015), "Mechanical behavior of circular and square concrete filled steel tube stub columns under local compression", Thin Wall. Struct., 94, 155-166. https://doi.org/10.1016/j.tws.2015.04.020.
  11. GB50010 (2011), Code for Design of Concrete Structures, China Architecture and Building Press, Beijing,China.
  12. Goswami, R. and Murty, C. (2010), "Externally reinforced welded I-beam-to-box-column seismic connection", J. Eng. Mech., 136(1), 23-30. https://doi.org/10.1061/(ASCE)0733-9399(2010)136:1(23).
  13. Han, L., Tao, Z. and Wang, W. (2019), Compos. Struct. Hybrid Struct. Exp. Theory Methods, Science Press, Beijing, China.
  14. Johnson, R.P., Molenstra, N. and Eppib (1991), "Partial shear connection in composite beams for buildings", Proceedings of the Institution Civil Eng., 91(4), 679-704. https://doi.org/10.1061/(ASCE)0733-9399(2010)136:1(23).
  15. Kang, L., Leon, R.T. and Lu, X. (2015), "Shear strength analyses of internal diaphragm connections to CFT columns", Steel Compos. Struct., 18(5), 1083-1101. https://10.12989/scs.2015.18.5.1083.
  16. Katwal, U., Tao, Z. and Hassan, M.K. (2018), "Finite element modelling of steel-concrete composite beams with profiled steel sheeting", J. Constr. Steel Res., 146, 1-15. https://doi.org/10.1016/j.jcsr.2018.03.011.
  17. Mirambell, E., Bonilla, J., Bezerra, L.M. and Clero, B. (2021), "Numerical study on the deflections of steel-concrete composite beams with partial interaction", Steel Compos. Struct., 38(1), 67-78. https://10.12989/scs.2021.38.1.067.
  18. Mou, B., Zhao, F. and Liu, X. (2022), "Flexure behavior of composite beam to CFST column connection: Numerical investigation and theoretical design formulae", J. Build. Eng., 51, 104210. https://doi.org/10.1016/j.jobe.2022.104210.
  19. Nakashima, M., Inoue, K. and Tada, M. (1998), "Classification of damage to steel buildings observed in the 1995 Hyogoken-Nanbu earthquake", Eng. Struct., 20(4), 271-281. https://doi.org/10.1016/S0141-0296(97)00019-9.
  20. Ollgaard, J.G., Slutter, R.G. and Fisher, J.W. (1971), "Shear strength of stud connectors in lightweight and normal-weight concrete", Eng. J. American Institution Steel Constr., 8(2), 55-64.
  21. Qin, Y., Chen, Z. and Wang, X. (2014), "Experimental investigation of new internal-diaphragm connections to CFT columns under cyclic loading", J. Constr. Steel Res., 98, 35-44. https://doi.org/10.1016/j.jcsr.2014.02.014.
  22. Qin, Y., Chen, Z., Yang, Q. and Shang, K. (2014), "Experimental seismic behavior of through-diaphragm connections to concrete-filled rectangular steel tubular columns", J. Constr. Steel Res., 93, 32-43. https://doi.org/10.1016/j.jcsr.2013.10.020.
  23. Shariati, M., Grayeli, M., Shariati, A. and Naghipour, M. (2020), "Performance of composite frame consisting of steel beams and concrete filled tubes under fire loading", Steel Compos. Struct. 36(5), 587-602. https://doi.org/10.12989/scs.2020.36.5.587.
  24. Shin, K., Kim, Y., Oh, Y. and Moon, T. (2004), "Behavior of welded CFT column to H-beam connections with external stiffeners", Eng. Struct., 26(13), 1877-1887. https://doi.org/10.1016/j.engstruct.2004.06.016.
  25. Subhani, M., Kabir, M.I. and Al-Ameri, R. (2020), "Strengthening of steel-concrete composite beams with composite slab", Steel Compos. Struct., 34(1), 91-105. https://doi.org/10.12989/scs.2020.34.1.091.
  26. Tan, E.L. and Uy, B. (2011), "Nonlinear analysis of composite beams subjected to combined flexure and torsion", J. Constr. Steel Res., 67(5), 790-799. https://doi.org/10.1016/j.jcsr.2010.12.015.
  27. Varma, A.H., Ricles, J.M., Sause, R. and Lu, L.W. (2002), "Experimental behavior of high strength square concrete-filled steel tube beam-columns", J. Struct. Eng., 128(3), 309-318. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:3(309).
  28. Vulcu, C., Stratan, A., Ciutina, A. and Dubina, D. (2017), "Beam-to-CFT high-strength joints with external diaphragm. I: design and experimental validation", J. Struct. Eng., 143(5), 04017001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001709.
  29. Younas, S., Li, D., Hamed, E. and Uy, B. (2021), "Behaviour of high strength concrete-filled short steel tubes under sustained loading", Steel Compos. Struct., 39(2), 159-170. https://doi.org/10.12989/scs.2021.39.2.159.
  30. Yu, Y., Lan, L., Chen, Z. and Huang, J. (2019), "Mechanical and seismic behaviors of bottom-flange-bolted upper-flange-welded through-diaphragm connections", J. Constr. Steel Res., 156, 86-95. https://doi.org/10.1016/j.jcsr.2019.01.015.
  31. Yu, Y., Man, M., Zhang, C. and Ding, F. (2020), "Seismic performance and working mechanism of innovate bottom-flange-bolted type through-diaphragm connections", Structures, 28, 1601-1615. https://doi.org/10.1016/j.istruc.2020.10.006.
  32. Yu, Y., Nie, X., Zhang, C., Ding, F. and Guo, W. (2021), "Seismic behavior of bottom-flange-bolted type through-diaphragm connection considering the slab effect", Eng. Struct., 229, 111642. https://doi.org/10.1016/j.engstruct.2020.111642.
  33. Zheng, X., Li, W., Huang, Q. and Wang, B. (2021), "Finite element modeling of steel-concrete composite beams with different shear connection degrees", Int. J. Steel Struct., 21(1), 381-391. https://doi.org/10.1007/s13296-020-00444-z.
  34. Zhou, Q., Fu, H., Ding, F., Liu, X., Yu, Y., Wang, L., Yu, Z. and Luo, L. (2019), "Seismic behavior of a new through-core connection between concrete-filled steel tubular column and composite beam", J. Constr. Steel Res., 155, 107-120. https://doi.org/10.1016/j.jcsr.2018.12.002.