DOI QR코드

DOI QR Code

Evaluation of Reverse Electrodialysis based on the Number of Cell Pairs and Stack Size Using Patterned Ion Exchange Membrane

패턴형 이온교환막을 이용한 스택의 셀 수 및 크기에 따른 역전기투석 성능 평가

  • Dong-Gun Lee (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Hanki Kim (Korea Institute of Energy Research, Jeju Global Research Center) ;
  • Namjo Jeong (Korea Institute of Energy Research, Jeju Global Research Center) ;
  • Young Sun Mok (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Jiyeon Choi (Korea Institute of Energy Research, Jeju Global Research Center)
  • Received : 2023.04.06
  • Accepted : 2023.05.08
  • Published : 2023.06.25

Abstract

Salinity gradient energy can be generated from a mixture of water streams with different salt concentrations by using reverse electrodialysis (RED). In this study, we evaluated the effect of stack size and number of cell pairs on the energy efficiency and specific energy of the RED process. Additionally, we studied the prementioned parameters to maximize the power density of RED. The performance of the RED stack which used a patterned ion exchange membrane, was evaluated as a function of stack size and feed flow rate. Moreover, it was noted that an increase in stack size increased the ion movement through the ion exchange membrane. Furthermore, an increase in feed flow rate led to a reduction in the concentration variation, resulting in an increase in OCV and power density. The energy efficiency and specific energy for 100 cells in the 10 × 10 cm2 stack were the highest at 12% and 0.05 kWh/m3, respectively, while the power density from 0.33 cm/s to 5 × 5 cm2 stack was the highest at 0.53 W/m2. The study showed that the RED performance can be improved by altering the size of the stack and the number of cell pairs, thereby positively affecting energy efficiency and specific energy.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 연구개발특구진흥재단의 '지역의 미래를 여는 과학기술 프로젝트'의 일환으로 수행되었습니다(과제번호 : 2022-DD-UP-0308-01-101).

References

  1. Sharma, R. C., and Sharma, N., 2013, "Energy from the Ocean and Scope of its Utilization in India", International Journal of Environmental Engineering and Management, 4(4), 397-404.
  2. Micale, G., Cipollina, A., and Tamburini, A., 2016, "Salinity gradient energy", Sustainable Energy from Salinity Gradients, 1-17, Elsevier, UK.
  3. Yang, S.C., Choi, Y.W., Choi, J.Y., Jeong, N.J., Kim, H.K., Nam, J.Y., and Jeong, H.J., 2019, "R2R fabrication of pore-filling cation-exchange membranes via one-time impregnation and their application in reverse electrodialysis", ACS Sustainable Chem. Eng., 7(14), 12200-12213. https://doi.org/10.1021/acssuschemeng.9b01450
  4. Kim, H. K., Lee, M. S., Lee, S.Y., Choi, Y.W., Jeong, N.J., and Kim, C.S., 2015, "High power density of reverse electrodialysis with pore-filling ion exchange membranes and a high-open-area spacer", J. Mater. Chem. A, 3(31), 16302-16306. https://doi.org/10.1039/C5TA03571F
  5. Post, J.W., Hamelers, H.V.M., and Buisman, C.J.N., 2008, "Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system", Environ. Sci. Technol., 42(15), 5785-5790. https://doi.org/10.1021/es8004317
  6. Mehdizadeh, S., Yasukawa, M., Abo, T., Kakihana, Y., and Higa, M., 2019, "Effect of spacer geometry on membrane and solution compartment resistances in reverse electrodialysis", J. Membr. Sci, 572, 271-280. https://doi.org/10.1016/j.memsci.2018.09.051
  7. Vermaas, A.D., Saakes, M., and Nijmeijer, K., 2011, "Power generation using profiled membranes in reverse electrodialysis", J. Membr. Sci, 385, 234-242. https://doi.org/10.1016/j.memsci.2011.09.043
  8. Pawlowski, S., Rijnaarts, T., Saakes, M., Nijmeijer, K., Crespo, J.G., and Velizarov, S., 2017, "Improved fluid mixing and power density in reverse electrodialysis stacks with chevron-profiled membranes", J. Membr. Sci, 531, 111-121. https://doi.org/10.1016/j.memsci.2017.03.003
  9. Choi, J.Y., Kim, W.S., Kim, H.K., Yang, S.C., and Jeong, N.J., 2021, "Ultra-thin pore-filling membranes with mirror-image wave patterns for improved power density and reduced pressure drops in stacks of reverse electrodialysis", J. Membr. Sci, 620, 118885.
  10. Kim, H.K., Yang, S.C., Choi, J.Y., Kim, J.O., and Jeong, N.J., 2021, "Optimization of the number of cell pairs to design efficient reverse electrodialysis stack", Desalination, 497, 114676.
  11. Nam, J.Y., Jwa, E.J., Eom, H.J., Kim, H.K., Hwang, K.S., and Jeong, N.J., 2021, "Enhanced energy recovery using a cascaded reverse electrodialysis stack for salinity gradient power generation", Water Research, 200, 117255.
  12. Pawlowski, S., Sistat, P., Crespo, J.G., and Velizarov, S., 2014, "Mass transfer in reverse electrodialysis: Flow entrance effects and diffusion boundary layer thickness", J. Membr. Sci, 471, 72-83. https://doi.org/10.1016/j.memsci.2014.07.075
  13. Luo, X., Cao, X., Mo, Y., Xiao, K., Zhang, X., Liang, P., and Huang, X., 2012, "Power generation by coupling reverse electrodialysis and ammonium bicarbonate: Implication for recovery of waste heat", Electrochem. commun., 19, 25-28. https://doi.org/10.1016/j.elecom.2012.03.004
  14. Hulme, A.M., Davey, C.J., Tyrrel, S., Pidou, M., and McAdam, E.J., 2021, "Scale-up of reverse electrodialysis for energy generation from high concentration salinity gradients", J. Membr. Sci, 627, 119245.
  15. Yip, N.Y., Vermaas, D.A., Nijmeijer, K., and Elimelech, M., 2014, "Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients", Environ. Sci. Technol., 48(9), 4925-4936. https://doi.org/10.1021/es5005413
  16. Na, J.C., Kim, H.K., Kim, C.S., and Han, M.H., 2014, "Effect of seawater/fresh water flow rates on power density of reverse electrodialysis", Journal of Korean Society of Environmental Engineers, 36(9), 624-628. https://doi.org/10.4491/KSEE.2014.36.9.624
  17. Veerman, J., de Jong, R. M., Saakes, M., Metz, S. J., and Harmsen, G.J., 2009, "Reverse electrodialysis: Comparison of six commercial membrane pairs on the thermodynamic efficiency and power density", J. Membr. Sci, 343(1-2), 7-15. https://doi.org/10.1016/j.memsci.2009.05.047
  18. Veerman, J., Saakes, M., Metz, S.J., and Harmsen, G. J., 2010, "Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant", Environ. Sci. Technol., 44(23), 9207-9212. https://doi.org/10.1021/es1009345
  19. Moreno, J., Grasman, S., van Engelen, R., and Nijmeijer, K., 2018, "Upscaling reverse electrodialysis", Environ. Sci. Technol., 52(18), 10856-10863.  https://doi.org/10.1021/acs.est.8b01886