DOI QR코드

DOI QR Code

합성 방법에 따른 Li1.3Al0.3Ti1.7(PO4)3 소결체의 미세 구조 및 이온전도 특성 연구

A Study on the Microstructures and Ionic Conductivity of Li1.3Al0.3Ti1.7(PO4)3 with Different Synthesis Routes

  • 최슬기 (단국대학교 에너지공학과) ;
  • 최재원 (경상국립대학교 화학과) ;
  • 양민호 (단국대학교 에너지공학과)
  • Seul Ki Choi (Department of Energy Engineering, Dankook University) ;
  • Jeawon Choi (Department of Chemistry, Gyeongsang National University) ;
  • MinHo Yang (Department of Energy Engineering, Dankook University)
  • 투고 : 2023.02.15
  • 심사 : 2023.04.19
  • 발행 : 2023.04.28

초록

Li1.3Al0.3Ti1.7(PO4)3(LATP) is considered a promising material for all-solid-state lithium batteries owing to its high moisture stability, wide potential window (~6 V), and relatively high ion conductivity (10-3-10-4 S/cm). Solid electrolytes based on LATP are manufactured via sintering, using LATP powder as the starting material. The properties of the starting materials depend on the synthesis conditions, which affect the microstructure and ionic conductivity of the solid electrolytes. In this study, we synthesize the LATP powder using sol-gel and co-precipitation methods and characterize the physical properties of powder, such as size, shape, and crystallinity. In addition, we have prepared a disc-shaped LATP solid electrolyte using LATP powder as the starting material. In addition, X-ray diffraction, scanning electron microscopy, and electrochemical impedance spectroscopic measurements are conducted to analyze the grain size, microstructures, and ion conduction properties. These results indicate that the synthesis conditions of the powder are a crucial factor in creating microstructures and affecting the conduction properties of lithium ions in solid electrolytes.

키워드

과제정보

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022R1C1C1006536).

참고문헌

  1. J.-M. Tarascon and M. Armand: Nature, 414 (2001) 359.
  2. Z. Ding, X. Li, T. Wei, Z. Yin and X. Li: Electrochim. Acta, 196 (2016) 622.
  3. D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand and G. Wang: Chem., 5 (2019) 2326.
  4. Q. Zhao, S. Stalin, C.-Z. Zhao and L. A. Archer: Nat. Rev. Mater., 5 (2020) 229.
  5. R. Mercier, J.-P. Malugani, B. Fahys and G. Robert: Solid State Ionics, 5 (1981) 663. https://doi.org/10.1016/0167-2738(81)90341-6
  6. N. Kamaya, J. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto and A. Mitsui: Nat. Mater., 10 (2011) 682.
  7. T. A. Yersak, Y. Zhang, F. Hao and M. Cai: Front. Energy Res., 10 (2022) 882508.
  8. B. Kang, H. Park, S. Woo, M. Kang and A. Kim: Ceramist, 21 (2018) 349. 
  9. Y. Inaguma, C. Liquan, M. Itoh and T. Nakamura: Solid State Commun., 86 (1993) 689.
  10. R. Murugan, V. Thangadurai and W. Weppner: Angew. Chem. Int. Ed., 46 (2007) 7781.
  11. D. Safanama, D. Damiano, R. Prasada and S. Adams: Solid State Ionics, 262 (2014) 211. https://doi.org/10.1016/j.ssi.2013.11.031
  12. Y. Yoon, J. Kim, C. Park and D. Shin: J. Ceram. Process. Res., 14 (2013) 563.
  13. S. Wang, Y. Ding, G. Zhou, G. Yu and A. Manthiram: ACS Energy Lett., 1 (2016) 1080.
  14. B. Lang, B. Ziebarth and C. Elsasser: Chem. Mater., 27 (2015) 5040.
  15. K. Arbi. S. Mandal, J. M. Rojo and J. Sanz: Chem. Mater., 14 (2002) 1091.
  16. L. Huang, Z. Wen, M. Wu, X. Wu, Y. Liu and X. Wang: J. Power Sources, 196 (2011) 6943.
  17. Q. Ma, Q. Xu, C.-L. Tsai, F. Tietz and O. Guillon: J. Am. Ceram. Soc., 99 (2016) 410.
  18. Z. Yao, K. Zhu, J. Zhang, X. Li, J. Wang, K. Yan and J. Liu: J. Mater. Sci.: Mater. Elecron., 32 (2021) 24834
  19. M. Kotobuki, M. Koishi and Y. Kato: Solid State Ionics, 19 (2013) 1945.
  20. A. G. Mailer, P. S. Clegg and P. N. Pusey: J. Phys. Condens. Matter, 27 (2015) 145102.
  21. Y.-K. Byeun, S.-H. Lee and S.-C. Choi: J. Kor. Ceram. Soc., 40 (2003) 798.
  22. S. Duluard, A. Paillassa, L. Puech, P. Vinatier, V. Turq, P. Rozier, P. Lenormand, P.-L. Taberna, P. Simon and F. Ansart: J. Eur. Ceram. Soc., 33 (2013) 1145.
  23. P. Scherrer: Nachr. Ges. Wiss. Gottingen, 26 (1918) 98.
  24. J. I. Langford and A. J. C. Wilson: J. Appl. Cryst., 11 (1978) 102.
  25. A. J. Bard and L. R. Faulkner: ELECTROCHEMICAL METHODS Fundamentals and Application (2nd Ed.), John Wiley & Sons, New York (2001).
  26. J. T. S. Irvine, D. C. Sinclair and A. R. West: Adv. Mater., 2 (1990) 132.