Acknowledgement
The authors would like to thank Science and Engineering Research Board, Department of Science and Technology, Government of India (File No. ECR/2016/001829) for the financial support.
References
- Alijani, F. and Amabili, M. (2014), "Non-linear vibrations of shells: A literature review from 2003 to 2013", Int. J. Nonlin. Mech., 58, 233-257. https://doi.org/10.1016/j.ijnonlinmec.2013.09.012.
- Babaei, H., Kiani, Y. and Eslami, M.R. (2019), "Large amplitude free vibrations of long FGM cylindrical panels on nonlinear elastic foundation based on physical neutral surface", Compos. Struct., 220, 888-898. https://doi.org/10.1016/j.compstruct.2019.03.064.
- Bakoura, A., Bourada, F., Bousahla, A.A., Tounsi, A., Benrahou, K.H., Tounsi, A., ... & Mahmoud, S.R. (2021), "Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method", Comput. Concrete, 27, 1598-9198. https://doi.org/10.12989/cac.2021.27.1.073.
- Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057.
- Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2015), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Brazil. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0.
- Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60, 195-216. https://doi.org/10.1115/1.2777164.
- Bouafia, K., Selim, M.M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A., ... & Tounsi, A. (2021), "Bending and free vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model". Steel Compos. Struct., 41, 487-503. https://doi.org/10.12989/scs.2021.41.4.487.
- Brischetto, S. and Carrera, E. (2010), "Advanced mixed theroies for bending analysis of functionally graded plates", Comput. Struct., 88, 1474-1483. https://doi.org/10.1016/j.compstruc.2008.04.004.
- Efraim, E. and Eisenberger, M (2006), "Exact vibration analysis of variable thickness thick annular isotropic and FGM plates", J. Sound Vib., 299, 720-738. https://doi.org/10.1016/j.jsv.2006.06.068.
- Fazilati, J. and Ovesy, H.R. (2013), "Parametric instability of laminated longitudinally stiffened curved panels with cutout using higher order FSM", Compos. Struct., 95, 691-696. https://doi.org/10.1016/j.compstruct.2012.08.034.
- Gibson, L.J., Ashby, M.F., Karam, G.N., Wegst, U. and Shercliff, H.R. (2005), "Mechanical properties of natural materials. II. Microstructures for mechanical efficiency", Proc. Roy. Soc. London Ser. A, 450, 141-162. https://doi.org/10.1098/rspa.1995.0076.
- Huang, Y., Zhao, Y. and Cao, D. (2020), "Bending and free vibration analysis of orthotropic in- plane functionally graded plates using a Chebyshev spectral approach", Compos. Struct., 255, 112938. https://doi.org/10.1016/j.compstruct.2020.112938.
- Jha, D.K., Kant, T. and Singh, R.K. (2013), "A critical review of recent research on functionally graded plates", Compos. Struct., 96, 833-849. http://doi.org/10.1016/j.compstruct.2012.09.001.
- Liew, K.M. (1993), "On the use of pb-2 Rayleigh-Ritz method for free-flexural vibration of triangular plates with curved internal supports", J. Sound Vib., 165, 329-340. https://doi.org/10.1006/jsvi.1993.1260.
- Liew, K.M., Zhao, X. and Ferreira, A.J.M. (2011), "A review of meshless methods for laminated and functionally graded plates and shells", Compos. Struct., 93(8), 2031-2041. https://doi.org/10.1016/j.compstruct.2011.02.018.
- Ma, L.S. and Wang, T.J. (2003), "Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings", Int. J. Solid. Struct., 40, 3311-3330. https://doi.org/10.1016/S0020-7683(03)00118-5.
- Mantari, J.L., Oktem, A.S. and Soares, C.G. (2011), "Bending response of functionally graded plates by using a new higher order shear deformation theory", Compos. Struct., 94, 714-723. https://doi.org/10.1016/j.compstruct.2011.09.007.
- Mechab, I., Mechab, B. and Benaissa, S. (2012), "Static and dynamic analysis of functionally graded plates using Four-variable refined plate theory by the new function", Compos.: Part B, 45, 748-757. https://doi.org/10.1016/j.compositesb.2012.07.015.
- Mehrparvar, M. and Ghannadpour, S.A.M. (2018), "Plate assembly technique for nonlinear analysis of relatively thick functionally graded plates containing rectangular holes subjected to in-plane compressive load", Compos. Struct., 202, 867-880. https://doi.org/10.1016/j.compstruct.2018.04.053.
- Mudhaffar, I.M., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Zahrani, M.M. and Al-Dulaijan, S.U. (2021), "Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation", Struct., 33, 2177-2189. https://doi.org/10.1016/j.istruc.2021.05.090.
- Praveen, G.N. and Reddy, J.N (1998), "Nonlinear transient thermoelastic analysis of functionally graded ceramic metal plates", Int. J. Solid Struct., 35, 4457-4479. https://doi.org/10.1016/S0020-7683(97)00253-9.
- Reddy, J.N and Chin, C.D (2007), "Thermomechanical analysis of functionally graded cylinders and plates", J. Therm. Stress., 21, 593-626. https://doi.org/10.1080/01495739808956165.
- Santos, H., Soares, C.M.M., Soares, C.A.M. and Reddy, J.N. (2009), "A semi-analytical finite element model for the analysis of cylindrical shells made of functionally graded materials", Compos. Struct., 91, 427-432. https://doi.org/10.1016/j.compstruct.2009.04.008.
- She, G.L., Yuan, F.G., Ren, Y.R., Liu, H.B. and Xiao, W.S. (2018), "Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory", Compos. Struct., 203, 614-623. https://doi.org/10.1016/j.compstruct.2018.07.063.
- Shen, H.S. (2014), "Nonlinear thermal bending of FGM cylindrical panels resting on elastic foundations under heat conduction", Compos. Struct., 113, 216-224. https://doi.org/10.1016/j.compstruct.2014.03.034.
- Tahir, S.I., Chikh, A., Tounsi, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2021), "Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment", Compos. Struct., 269, 114030. https://doi.org/10.1016/j.compstruct.2021.114030.
- Talha, M. and Singh, B. (2010), "Static response free vibration analysis of FGM plates using high order shear deform theory", Appl. Math. Model., 34, 3991-4011. https://doi.org/10.1016/j.apm.2010.03.034.
- Thai, H.T. and Choi, D.H. (2013), "A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates", Compos. Struct., 101, 332-340. https://doi.org/10.1016/j.compstruct.2013.02.019.
- Valizadeh, N., Natarajan, S., Gonzalez-Estrada, O.A., Rabczuk, T., Bui, T.Q. and Bordas, S.P. (2013), "NURBS-based finite element analysis of functionally graded plates: Static bending, vibration, buckling and flutter", Compos. Struct., 99, 309-326. https://doi.org/10.1016/j.compstruct.2012.11.008.
- Vu, T.V., Nguyen, N.H., Khosravifard, A., Hematiyan, M.R., Tanaka, S. and Bui, T.Q. (2017), "A simple FSDT-based meshfree method for analysis of functionally graded plates", Eng. Anal. Bound. Elem., 79, 1-12. https://doi.org/10.1016/j.enganabound.2017.03.002.
- Yang, J. and Shen, H.S (2003), "Nonlinear bending analysis of shear deformable functionally graded plates subjected to thermo-mechanical loads under various boundary conditions", Compos.: Part B, 34, 103-115. https://doi.org/10.1016/S1359-8368(02)00083-5.
- Yin, S., Yu, T., Bui, T.Q., Xia, S. and Hirose, S. (2015), "A cutout isogeometric analysis for thin laminated composite plates using level sets", Compos. Struct., 127, 152-164. https://doi.org/10.1016/j.compstruct.2015.03.016.
- Zaitoun, M.W., Chikh, A., Tounsi, A., Al-Osta, M.A., Sharif, A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2022), "Influence of the visco-Pasternak foundation parameters on the buckling behavior of a sandwich functional graded ceramic-metal plate in a hygrothermal environment", Thin Wall. Struct., 170, 108549. https://doi.org/10.1016/j.tws.2021.108549.
- Zenkour, A.M. and Hafed, Z.S. (2020), "Bending response of functionally graded piezoelectric plates using a two-variable shear deformation theory", Adv. Aircraft Spacecraft Sci., 7(2), 115-134. https://doi.org/10.12989/aas.2020.7.2.115.
- Zhang, D.G. and Zhou, H.M. (2015), "Nonlinear bending analysis of FGM circular plates based on physical neutral surface and higher-order shear deformation theory", Aerosp. Sci. Technol., 41, 90-98. https://doi.org/10.1016/j.ast.2014.12.016.
- Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Thermoelastic and vibration analysis of functionally graded cylindrical shells", Int. J. Mech. Sci., 51(9-10), 694-707. https://doi.org/10.1016/j.ijmecsci.2009.08.001.
- Zhong, S., Zhang, J., Jin, G., Ye, T. and Song, X. (2021), "Thermal bending and vibration of FGM plates with various cutouts and complex shapes using isogeometric method", Compos. Struct., 260, 113518. https://doi.org/10.1016/j.compstruct.2020.113518.