DOI QR코드

DOI QR Code

Thermoelastic deformation behavior of functionally graded cylindrical panels with multiple perforations

  • Shyam K. Chaudhary (Department of Mechanical Engineering, National Institute of Technology Jamshedpur) ;
  • Vishesh R. Kar (Department of Mechanical Engineering, National Institute of Technology Jamshedpur) ;
  • Karunesh K. Shukla (Department of Civil Engineering, National Institute of Technology Jamshedpur)
  • Received : 2022.10.05
  • Accepted : 2023.01.05
  • Published : 2023.03.25

Abstract

The present article focuses on the thermoelastic deformation behavior of inhomogeneous functionally graded metal/ceramic cylindrical shell structure with multiple perforations using 2D finite element approximation. Here, cylindrical shell structure is considered with single (1×1) and multiple (2×2, 3×3 and 4×4) perforations. The temperature-dependent elastic and thermal properties of functionally graded material are evaluated using Voigt's micromechanical material scheme via power-law function. The kinematics of the proposed model is based on the equivalent single-layer first-order shear deformation mid-plane theory with five degrees-of-freedom. Here, 2D isoparametric finite element solutions are obtained using eight-node quadrilateral elements. The mesh refinement of present finite element model is performed to confirm the appropriate number of elements and nodes for the analysis purpose. Subsequently, a comparison test is conducted to demonstrate the accuracy of present results. In later section, numerous numerical illustrations are demonstrated at different set of conditions by varying structural, material and loading parameters and that confirms the significance of various parameters such as power-law index, aspect ratio, thickness ratio, curvature ratio, number of perforations and temperature on the deformation characteristics of functionally graded cylindrical shell structure.

Keywords

Acknowledgement

The authors would like to thank Science and Engineering Research Board, Department of Science and Technology, Government of India (File No. ECR/2016/001829) for the financial support.

References

  1. Alijani, F. and Amabili, M. (2014), "Non-linear vibrations of shells: A literature review from 2003 to 2013", Int. J. Nonlin. Mech., 58, 233-257. https://doi.org/10.1016/j.ijnonlinmec.2013.09.012.
  2. Babaei, H., Kiani, Y. and Eslami, M.R. (2019), "Large amplitude free vibrations of long FGM cylindrical panels on nonlinear elastic foundation based on physical neutral surface", Compos. Struct., 220, 888-898. https://doi.org/10.1016/j.compstruct.2019.03.064.
  3. Bakoura, A., Bourada, F., Bousahla, A.A., Tounsi, A., Benrahou, K.H., Tounsi, A., ... & Mahmoud, S.R. (2021), "Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method", Comput. Concrete, 27, 1598-9198. https://doi.org/10.12989/cac.2021.27.1.073.
  4. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057.
  5. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2015), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Brazil. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0.
  6. Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60, 195-216. https://doi.org/10.1115/1.2777164.
  7. Bouafia, K., Selim, M.M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A., ... & Tounsi, A. (2021), "Bending and free vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model". Steel Compos. Struct., 41, 487-503. https://doi.org/10.12989/scs.2021.41.4.487.
  8. Brischetto, S. and Carrera, E. (2010), "Advanced mixed theroies for bending analysis of functionally graded plates", Comput. Struct., 88, 1474-1483. https://doi.org/10.1016/j.compstruc.2008.04.004.
  9. Efraim, E. and Eisenberger, M (2006), "Exact vibration analysis of variable thickness thick annular isotropic and FGM plates", J. Sound Vib., 299, 720-738. https://doi.org/10.1016/j.jsv.2006.06.068.
  10. Fazilati, J. and Ovesy, H.R. (2013), "Parametric instability of laminated longitudinally stiffened curved panels with cutout using higher order FSM", Compos. Struct., 95, 691-696. https://doi.org/10.1016/j.compstruct.2012.08.034.
  11. Gibson, L.J., Ashby, M.F., Karam, G.N., Wegst, U. and Shercliff, H.R. (2005), "Mechanical properties of natural materials. II. Microstructures for mechanical efficiency", Proc. Roy. Soc. London Ser. A, 450, 141-162. https://doi.org/10.1098/rspa.1995.0076.
  12. Huang, Y., Zhao, Y. and Cao, D. (2020), "Bending and free vibration analysis of orthotropic in- plane functionally graded plates using a Chebyshev spectral approach", Compos. Struct., 255, 112938. https://doi.org/10.1016/j.compstruct.2020.112938.
  13. Jha, D.K., Kant, T. and Singh, R.K. (2013), "A critical review of recent research on functionally graded plates", Compos. Struct., 96, 833-849. http://doi.org/10.1016/j.compstruct.2012.09.001.
  14. Liew, K.M. (1993), "On the use of pb-2 Rayleigh-Ritz method for free-flexural vibration of triangular plates with curved internal supports", J. Sound Vib., 165, 329-340. https://doi.org/10.1006/jsvi.1993.1260.
  15. Liew, K.M., Zhao, X. and Ferreira, A.J.M. (2011), "A review of meshless methods for laminated and functionally graded plates and shells", Compos. Struct., 93(8), 2031-2041. https://doi.org/10.1016/j.compstruct.2011.02.018.
  16. Ma, L.S. and Wang, T.J. (2003), "Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings", Int. J. Solid. Struct., 40, 3311-3330. https://doi.org/10.1016/S0020-7683(03)00118-5.
  17. Mantari, J.L., Oktem, A.S. and Soares, C.G. (2011), "Bending response of functionally graded plates by using a new higher order shear deformation theory", Compos. Struct., 94, 714-723. https://doi.org/10.1016/j.compstruct.2011.09.007.
  18. Mechab, I., Mechab, B. and Benaissa, S. (2012), "Static and dynamic analysis of functionally graded plates using Four-variable refined plate theory by the new function", Compos.: Part B, 45, 748-757. https://doi.org/10.1016/j.compositesb.2012.07.015.
  19. Mehrparvar, M. and Ghannadpour, S.A.M. (2018), "Plate assembly technique for nonlinear analysis of relatively thick functionally graded plates containing rectangular holes subjected to in-plane compressive load", Compos. Struct., 202, 867-880. https://doi.org/10.1016/j.compstruct.2018.04.053.
  20. Mudhaffar, I.M., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Zahrani, M.M. and Al-Dulaijan, S.U. (2021), "Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation", Struct., 33, 2177-2189. https://doi.org/10.1016/j.istruc.2021.05.090.
  21. Praveen, G.N. and Reddy, J.N (1998), "Nonlinear transient thermoelastic analysis of functionally graded ceramic metal plates", Int. J. Solid Struct., 35, 4457-4479. https://doi.org/10.1016/S0020-7683(97)00253-9.
  22. Reddy, J.N and Chin, C.D (2007), "Thermomechanical analysis of functionally graded cylinders and plates", J. Therm. Stress., 21, 593-626. https://doi.org/10.1080/01495739808956165.
  23. Santos, H., Soares, C.M.M., Soares, C.A.M. and Reddy, J.N. (2009), "A semi-analytical finite element model for the analysis of cylindrical shells made of functionally graded materials", Compos. Struct., 91, 427-432. https://doi.org/10.1016/j.compstruct.2009.04.008.
  24. She, G.L., Yuan, F.G., Ren, Y.R., Liu, H.B. and Xiao, W.S. (2018), "Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory", Compos. Struct., 203, 614-623. https://doi.org/10.1016/j.compstruct.2018.07.063.
  25. Shen, H.S. (2014), "Nonlinear thermal bending of FGM cylindrical panels resting on elastic foundations under heat conduction", Compos. Struct., 113, 216-224. https://doi.org/10.1016/j.compstruct.2014.03.034.
  26. Tahir, S.I., Chikh, A., Tounsi, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2021), "Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment", Compos. Struct., 269, 114030. https://doi.org/10.1016/j.compstruct.2021.114030.
  27. Talha, M. and Singh, B. (2010), "Static response free vibration analysis of FGM plates using high order shear deform theory", Appl. Math. Model., 34, 3991-4011. https://doi.org/10.1016/j.apm.2010.03.034.
  28. Thai, H.T. and Choi, D.H. (2013), "A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates", Compos. Struct., 101, 332-340. https://doi.org/10.1016/j.compstruct.2013.02.019.
  29. Valizadeh, N., Natarajan, S., Gonzalez-Estrada, O.A., Rabczuk, T., Bui, T.Q. and Bordas, S.P. (2013), "NURBS-based finite element analysis of functionally graded plates: Static bending, vibration, buckling and flutter", Compos. Struct., 99, 309-326. https://doi.org/10.1016/j.compstruct.2012.11.008.
  30. Vu, T.V., Nguyen, N.H., Khosravifard, A., Hematiyan, M.R., Tanaka, S. and Bui, T.Q. (2017), "A simple FSDT-based meshfree method for analysis of functionally graded plates", Eng. Anal. Bound. Elem., 79, 1-12. https://doi.org/10.1016/j.enganabound.2017.03.002.
  31. Yang, J. and Shen, H.S (2003), "Nonlinear bending analysis of shear deformable functionally graded plates subjected to thermo-mechanical loads under various boundary conditions", Compos.: Part B, 34, 103-115. https://doi.org/10.1016/S1359-8368(02)00083-5.
  32. Yin, S., Yu, T., Bui, T.Q., Xia, S. and Hirose, S. (2015), "A cutout isogeometric analysis for thin laminated composite plates using level sets", Compos. Struct., 127, 152-164. https://doi.org/10.1016/j.compstruct.2015.03.016.
  33. Zaitoun, M.W., Chikh, A., Tounsi, A., Al-Osta, M.A., Sharif, A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2022), "Influence of the visco-Pasternak foundation parameters on the buckling behavior of a sandwich functional graded ceramic-metal plate in a hygrothermal environment", Thin Wall. Struct., 170, 108549. https://doi.org/10.1016/j.tws.2021.108549.
  34. Zenkour, A.M. and Hafed, Z.S. (2020), "Bending response of functionally graded piezoelectric plates using a two-variable shear deformation theory", Adv. Aircraft Spacecraft Sci., 7(2), 115-134. https://doi.org/10.12989/aas.2020.7.2.115.
  35. Zhang, D.G. and Zhou, H.M. (2015), "Nonlinear bending analysis of FGM circular plates based on physical neutral surface and higher-order shear deformation theory", Aerosp. Sci. Technol., 41, 90-98. https://doi.org/10.1016/j.ast.2014.12.016.
  36. Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Thermoelastic and vibration analysis of functionally graded cylindrical shells", Int. J. Mech. Sci., 51(9-10), 694-707. https://doi.org/10.1016/j.ijmecsci.2009.08.001.
  37. Zhong, S., Zhang, J., Jin, G., Ye, T. and Song, X. (2021), "Thermal bending and vibration of FGM plates with various cutouts and complex shapes using isogeometric method", Compos. Struct., 260, 113518. https://doi.org/10.1016/j.compstruct.2020.113518.