DOI QR코드

DOI QR Code

Behavioral analysis of Pacific abalone, Haliotis discus hannai, reveals its feeding preference and attraction potential for brown alga, Sargassum horneri

  • Received : 2023.01.05
  • Accepted : 2023.02.20
  • Published : 2023.05.31

Abstract

The Pacific abalone, Haliotis discus hannai, is a highly valued and industrially important aquaculture species with growing demands of the expanding abalone aquaculture industry. To explore the feasibility of using the brown alga, Sargassum horneri, as a potential substitute for abalone feed, it is important to identify the feed preference and attractant effect of S. horneri on Pacific abalone. Our experiments indicated that the feeding-associated movement of abalone could be detected using a video tracking system under indirect illumination with dim red light. To further analyze the attraction potentials of various test materials, preference analysis was performed using Avicel-coated glass plates with ground powders of various seaweeds (e.g., S. horneri, Saccharina japonica, and Undaria pinnatifida) and commercial abalone feed, together with coffee waste. Heat map analysis indicated greater attraction by the kelp S. japonica than by S. horneri and commercial feed, which showed similar preference levels. Feeding preference based on the area of Avicel eaten by abalone showed a significant preference for U. pinnatifida over S. horneri (feeding area: 68.6 ± 20.1% vs. 37.5 ± 22.4%, p < 0.05). Additionally, the feeding area was significantly greater for plates with S. japonica than for plates with S. horneri (44.0 ± 16.6% vs. 22.6 ± 15.4%, p < 0.05). There was no significant difference in feeding area between commercial feed and S. horneri (31.7 ± 11.6% vs. 31.6 ± 20.2%, p > 0.05). The methanol extracts attracted abalone in the following order: U. pinnatifida > S. horneri > S. japonica > commercial feed > coffee waste. To determine the attractive effects of the components of methanol extracts, mixtures of methanol extracts of commercial feed with increasing amounts of S. horneri were examined. The results showed a significant increase in feeding preference upon addition of S. horneri up to 50% and 75%, suggesting its potential for use as an appetite-enhancing feed additive. This study identified conditions that can be successfully used to monitor the movement of Pacific abalone; the results of preference analysis confirmed that abalone exhibited similar attraction and feeding preference for S. horneri, compared with commercial feed.

Keywords

Acknowledgement

This work was supported by a Research Grant of Pukyong National University (2021).

References

  1. Almbro M, Kullberg C. Impaired escape flight ability in butterflies due to low flight muscle ratio prior to hibernation. J Exp Biol. 2008;211:24-8. https://doi.org/10.1242/jeb.008219
  2. Ansary MWR, Baek SI, Jeong HS, Lee KW, Cho SH, Kim HS, et al. Substitution effect of the combined fouling macroalgae Ulva australis and Sargassum horneri for Undaria pinnatifida in formulated diets on growth and body composition of juvenile abalone (Haliotis discus, Reeve 1846) subjected to air exposure stressor. J Appl Phycol. 2019;31:3245-54. https://doi.org/10.1007/s10811-019-01812-x
  3. Bangoura I, Chowdhury MTH, Kang JY, Cho JY, Jun JC, Hong YK. Accumulation of phlorotannins in the abalone Haliotis discus hannai after feeding the brown seaweed Ecklonia cava. J Appl Phycol. 2014;26:967-2.
  4. Domenici P. The scaling of locomotor performance in predator-prey encounters: from fish to killer whales. Comp Biochem Physiol A Mol Integr Physiol. 2001;131:169-82. https://doi.org/10.1016/S1095-6433(01)00465-2
  5. Duminda SKTC, Kim YR, Kim JM. Behavioral analysis of rock bream Oplegnathus fasciatus reveals a strong attraction potential for sea urchin extracts. Fish Aquat Sci. 2021;24:32-40. https://doi.org/10.47853/FAS.2021.e4
  6. Fletcher RL. The occurrence of 'Green Tides': a review. In: Schramm W, Nienhuis PH, editors. Marine benthic vegetation: recent changes and effects of eutrophication. Berlin: Springer-Verlag; 1996. p. 7-43.
  7. Gao X, Zhang M, Zheng J, Li X, Chi L, Song C, et al. Effect of LED light quality on the phototaxis and locomotion behaviour of Haliotis discus hannai. Aquac Res. 2016;47:3376-89. https://doi.org/10.1111/are.12901
  8. Gordon HR, Cook PA. World abalone fisheries and aquaculture update: supply and market dynamics. J Shellfish Res. 2004;23:935-40.
  9. Gorrostieta-Hurtado E, Searcy-Bernal R, Anguiano-Beltran C, Garcia-Esquivel Z, Valenzuela-Espinoza E. Effect of darkness on the early postlarval development of Haliotis corrugata abalone fed different diatom densities. Cienc Mar. 2009:35;113-22. https://doi.org/10.7773/cm.v35i1.1446
  10. Ha DS, Yoo HI, Chang SJ, Hwang EK. Bloom of a filamentous green alga Cladophora vadorum (Areschoug) Kutzing and nutrient levels at Shangrok beach, Buan, Korea. Korean J Fish Aquat Sci. 2016;49:241-6.
  11. Hernandez J, Uriarte I, Viana MT, Westermeier R, Farias A. Growth performance of weaning red abalone (Haliotis rufescens) fed with Macrocystis pyrifera plantlets and Porphyra columbina compared with a formulated diet. Aquac Res. 2009;40:1694-702. https://doi.org/10.1111/j.1365-2109.2009.02267.x
  12. Hwang EK, Lee SJ, Ha DS, Park CS. Sargassum golden tides in the Shinan-gun and Jeju island, Korea. Korean J Fish Aquat Sci. 2016;49:689-93.
  13. Ishii T, Suzuki Y, Matsuba M, Koyanagi T. Determination of trace elements in marine organisms-III distribution of trace elements in marine algae. Bull Jpn Soc Sci Fish. 1980;46:185-9. https://doi.org/10.2331/suisan.46.185
  14. Jang B, Kim PY, Kim HS, Lee KW, Kim HJ, Choi DG, et al. Substitution effect of sea tangle (ST) (Laminaria japonica) with tunic of sea squirt (SS) (Halocynthia roretzi) in diet on growth and carcass composition of juvenile abalone (Haliotis discus, Reeve 1846). Aquac Nutr. 2018;24:586-93. https://doi.org/10.1111/anu.12593
  15. Kang JW. Illustrated encyclopedia of fauna and flora of Korea. Vol. 8. Marine algae. Seoul: Samhwa Press; 1968.
  16. Kawamura T, Roberts RD, Yamashita Y. Radula development in abalone Haliotis discus hannai from larva to adult in relation to feeding transitions. Fish Sci. 2001;67:596-605. https://doi.org/10.1046/j.1444-2906.2001.00295.x
  17. Kim SY, Park CJ, Nam WS, Kim JM, Lee JH, Noh JK, et al. Comparison of formulated feed and two seaweed-based diets on growth of Pacific abalone (Haliotis discus hannai). Korean J Malacol. 2013;29:233-8. https://doi.org/10.9710/kjm.2013.29.3.233
  18. Kitagawa I, Fusetani N. Chemical signal of marine organisms. Tokyo: Kodansha; 1989. p. 204.
  19. Komatsu T, Tatsukawa K, Filippi JB, Sagawa T, Matsunaga D, Mikami A, et al. Distribution of drifting seaweeds in eastern East China Sea. J Mar Syst. 2007;67:245-52. https://doi.org/10.1016/j.jmarsys.2006.05.018
  20. Korean Statistical Information Service [KOSIS]. Annual production of major species from coastal aquaculture [Internet]. Statistics Korea. 2020 [cited 2023 Feb 19]. https://www.mof.go.kr/statPortal/cate/statView.do
  21. Lee JB, Kim BY. Feeding stimulants and feeding preference of Haliotis discus Reeve (Jeju island) to marine algae. Korean J Environ Biol. 2013;31:458-70. https://doi.org/10.11626/KJEB.2013.31.4.458
  22. Nagelkerken I, Munday PL. Animal behaviour shapes the ecological effects of ocean acidification and warming: moving from individual to community-level responses. Glob Change Biol. 2016;22:974-89. https://doi.org/10.1111/gcb.13167
  23. Nishide E, Kinoshita Y, Anzai H, Uchida N. Distribution of hot-water extractable material, water-soluble alginate and alkali-soluble alginate in different parts of Undaria pinnatifida. Bull Jpn Soc Sci Fish. 1988;54:1619-22. https://doi.org/10.2331/suisan.54.1619
  24. Okuda T. Sargassum filicinum; its new findings in sexuality and distribution around Japan. Bull Jpn Soc Phycol. 1977;25:265-9.
  25. O'Mahoney M, Rice O, Mouzakitis G, Burnell G. Towards sustainable feeds for abalone culture: evaluating the use of mixed species seaweed meal in formulated feeds for the Japanese abalone, Haliotis discus hannai. Aquaculture. 2014;430:9-16. https://doi.org/10.1016/j.aquaculture.2014.02.036
  26. Ortiz J, Romero N, Robert P, Araya J, Lopez-Hernandez J, Bozzo C, et al. Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chem. 2006;99:98-104. https://doi.org/10.1016/j.foodchem.2005.07.027
  27. Park CJ, Kim SY. Abalone aquaculture in Korea. J Shellfish Res. 2013;32:17-9. https://doi.org/10.2983/035.032.0104
  28. Smetacek V, Zingone A. Green and golden seaweed tides on the rise. Nature. 2013;504:84-8. https://doi.org/10.1038/nature12860
  29. Uchida K, Kawamura G, Kasedou T, Onoue T, Archdale MV. Chemoreception in the abalone Haliotis discus hannai (Ino) and its role in inducing feeding. Bull Jpn Soc Sci Fish. 2010;76:185-91. https://doi.org/10.2331/suisan.76.185
  30. Valiela I, McClelland J, Hauxwell J, Behr PJ, Hersh D, Foreman K. Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol Oceanogr. 1997;42:1105-18. https://doi.org/10.4319/lo.1997.42.5_part_2.1105
  31. Weber JM. The physiology of long-distance migration: extending the limits of endurance metabolism. J Exp Biol. 2009;212:593-7. https://doi.org/10.1242/jeb.015024
  32. Yoshida T. Studies on the distribution and drift of the floating seaweeds. Bull Tohoku Reg Fish Res Lab. 1963;23:141-86.