DOI QR코드

DOI QR Code

경안천 내 질소 함량의 시공간적 변화와 기원 연구

Study of Spatiotemporal Variations and Origin of Nitrogen Content in Gyeongan Stream

  • 박종훈 (연세대학교 지구시스템과학과 ) ;
  • 김신영 (연세대학교 지구시스템과학과 ) ;
  • 서수민 (연세대학교 지구시스템과학과 ) ;
  • 이현아 (제주연구원 지하수연구센터) ;
  • 우남칠 (연세대학교 지구시스템과학과 )
  • Jonghoon Park (Department of Earth System Sciences, Yonsei University) ;
  • Sinyoung Kim (Department of Earth System Sciences, Yonsei University) ;
  • Soomin Seo (Department of Earth System Sciences, Yonsei University) ;
  • Hyun A Lee (Groundwater Research Center, Jeju Research Institute) ;
  • Nam C. Woo (Department of Earth System Sciences, Yonsei University)
  • 투고 : 2023.03.22
  • 심사 : 2023.04.13
  • 발행 : 2023.04.28

초록

이 연구는 경안천 유역의 상류로부터 하류까지 본류와 하위 소유역의 배출 지점에서 관측되는 경안천 내 질소함량의 시공간적 변화를 이해하고, 이러한 질소류의 기원을 확인하고자 수행되었다. 2021년 11월부터 2022년 11월까지, 분기별 현장 조사와 실내 수질분석, 질산염과 붕소의 환경동위원소 분석을 수행하였다. 경안천의 유량지속곡선을 도출하여, 건조 기간(2021년 12월 중순부터 2022년 6월 중순)과 습윤 기간(2022년 6월 중순부터 11월 초까지)을 설정하였다. 연구 지역에서의 총 질소(T-N) 농도는 월단위 시간적 변동을 기준으로 할 때, 건조 기간에 속하는 1~2월에 농도가 가장 높았다가 5~6월까지 지속적으로 낮아진다. 홍수기인 7~9월 이후 T-N의 농도가 낮아지는 소유역 단위 최상류 지점들(Group 1: MS-0, OS-0, GS-0)과, 반대로 높아지는 경안천 본류와 소유역 하류 지점들(Group 2: MS-1~8, OS-1, GS-1)이 분리된다. 공간적으로, 경안천 본류의 T-N 농도는 상류에서 하류로 갈수록 증가하는 경향성을 보이지만, 소유역인 오산천과 곤지암천이 각각 합류되는 지점에서는 이들의 유입에 의해 본류의 T-N 농도 값에 의해 본류의 농도가 높아지거나 낮아지는 영향을 받고 있다. 환경동위원소비를 통해 모든 시료의 질소가 분뇨(manure) 기원으로 규명되었고, 수리화학적 특성의 변화와 T-N 농도의 변화에서 경안천으로 분뇨 기원의 질소가 유입될 수 있는 기작으로, (1) 축산단지의 분뇨, 폐수의 강우에 의한 유입, (2) 환경기초시설 방류수를 통한 유입, (3) 농업 활동 과정에서 축적된 질소류의 지하수 기저유출을 통한 유입 등이 제시되었다. 궁극적으로 경안천 유역의 수질관리는, 공간적 관점에서 지류를 포함하는 소유역 단위의 오염원 관리가 필요하며, 오염총량 관리 측면에서는 하천 유량의 수문성분을 구분하고, 각각 성분의 유량과 수질을 모니터링 할 수 있는 시스템의 구축과 운용이 선결되어야 한다.

This study aimed to understand the spatiotemporal variations in nitrogen content in the Gyeongan stream along the main stream and at the discharge points of the sub-basins, and to identify the origin of the nitrogen. Field surveys and laboratory analyses, including chemical compositions and isotope ratios of nitrate and boron, were performed from November 2021 to November 2022. Based on the flow duration curve (FDC) derived for the Gyeongan stream, the dry season (mid-December 2021 to mid-June 2022) and wet season (mid-June to early November 2022) were established. In the dry season, most samples had the highest total nitrogen(T-N) concentrations, specifically in January and February, and the concentrations continued to decrease until May and June. However, after the flood season from July to September, the uppermost subbasin points (Group 1: MS-0, OS-0, GS-0) where T-N concentrations continually decreased were separated from the main stream and lower sub-basin points (Group 2: MS-1~8, OS-1, GS-1) where concentrations increased. Along the main stream, the T-N concentration showed an increasing trend from the upper to the lower reaches. However, it was affected by those of the Osan-cheon and Gonjiamcheon, the tributaries that flow into the main stream, resulting in respective increases or decreases in T-N concentration in the main stream. The nitrate and boron isotope ratios indicated that the nitrogen in all samples originated from manure. Mechanisms for nitrogen inflow from manure-related sources to the stream were suggested, including (1) manure from livestock wastes and rainfall runoff, (2) inflow through the discharge of wastewater treatment plants, and (3) inflow through the groundwater discharge (baseflow) of accumulated nitrogen during agricultural activities. Ultimately, water quality management of the Gyeongan stream basin requires pollution source management at the sub-basin level, including its tributaries, from a regional context. To manage the pollution load effectively, it is necessary to separate the hydrological components of the stream discharge and establish a monitoring system to track the flow and water quality of each component.

키워드

과제정보

본 연구는 한강수계관리위원회 환경기초조사사업과 한국연구재단 이공분야 대학중점연구소지원사업(과제번호: 2017R1A6A1A07015374)의 지원으로 수행되었습니다. 상세한 논문검토 의견을 제시하여 주신 심사위원들께도 감사드립니다.

참고문헌

  1. Blessing, M., Schmidt, T.C., Dinkel, R. and Haderlein, S.B. (2009) Delineation of multiple chlorinated ethene sources in an industrialized areas-a forensic field study using compound-specific isotope analysis. Environ. Sci. Technol., v.43, p.2701-2707. https://doi.org/10.1021/es803100p
  2. Briand, C., Plagnes, V., Sebilo, M., Louvat, P., Chesnot, T., Schneider, M., Ribstein, P. and Marchet, P. (2013) Combination of nitrate (N, O) and boron isotopic ratios with microbiological indicators for the determination of nitrate sources in karstic groundwater. Environ. Chem., v.10, p.365-369. http://dx.doi.org/10.1071/EN13036
  3. Briand, C., Sebilo, M., Louvat, P., Chesnot, T., Vaury, V., Schneider, M. and Plagnes, V. (2017) Legacy of contaminant N sources to the NO3(-) signature in rivers: a combined isotopic (δ15NNO3, δ18ONO3, δ11B) and microbiological investigation. Sci. Rep., v.7, 41703. https://doi.org/10.1038/srep41703
  4. Cleland, B.R. (2003) TMDL Development from the "bottom up"- Park III: Duration Curves and Wet-Weather Assessments. Proceedings of the Water Environment Fedreration, National TMDL Science and Policy, Water Environment Federation, p.1740-1766. https://doi.org/10.2175/193864703784828976
  5. Freyer, H.D. and Aly, A.J.M. (1974) 15N studies on identifying fertilizer excess in environmental systems. In: Isotope Ratios as Pollutant Source and Behaviour Indicators. IAEA, Vienna, pp. 21-33.
  6. Gwangju city hall. https://www.gjcity.go.kr.
  7. Gyeonggi Data Dream. https://data.gg.go.kr.
  8. Heaton, T.H.E. (1986) Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem. Geol., v.59, p.87-102. https://doi.org/10.1016/0168-9622(86)90059-X
  9. HRBEO (2021) Evaluation of the implementation of the 2020 water environment management plan in the Gyeongan stream and Paldang Dam. Han River Basin Environmental Office, No. 11-1480347-000135-14, 83p.
  10. HRFCO (Han River Flood Control Office). http://www.hrfco.go.kr.
  11. Jang J.H, Yoon C.G, Jung K.W. and Son, Y.K. (2009) Decision of Critical Area Due to NPS Pollutant Loadings from Kyongan Stream Watershed using BASINS-SWAT. J. Korean Soc. Agric. Eng., v.51, n.5, p.69-78. https://doi.org/10.5389/KSAE.2009.51.5.069
  12. Karr, J.D., Showers, W.J. and Hinson, T.H. (2007) Nitrate Source Identification Using δ15N in a Ground Water Plume Near an Intensive Swine Operation. Ground Water Mornitoring & Remediation, v.22(2), p.68-75. https://doi.org/10.1111/j.1745-6592.2002.tb00314.x
  13. KIGAM (Korea Institute of Geoscience and Mineral Resources). Geo Big Data Open Platform. https://data.kigam.re.kr.
  14. Kim, G. and Lee, H. (2009). Impacts of nitrate in base flow discharge on surface water quality. Journal of Civil and Environmental Engineering Research (KSCE), v.29(1B), p.105-109.
  15. Kim, J.H., Moon, K.H. and Ahn, S.G. (2001) Groundwater quality in the shallow aquifer at the plastic film houses area near livestock area in Kyongan river basin. J. KoSES, v.5(3), p.77-85.
  16. Kim, J.Y., Yeo, I.H., Kim, Y.S. and Lee, J.H. (2021) The Watershed Management using Analysis of Space Time Water Quality. J. Wat. Treat., v.29(2), p.13-20. https://doi.org/10.17640/KSWST.2021.29.2.13
  17. Kim, Y.T, and Woo, N.C. (2003) Nitrate Contamination of Shallow Groundwater in an Agricultural area having Intensive Livestock Facilities. Journal of KoSSGE, v.8(1), p.57-67.
  18. KMA (Korea Meteorological Administration), https://data.kma.go.kr.
  19. Kruk M.K., Mayer, B., Nightingale, M, and Laceby, J.P. (2020) Tracing nitrate sources with a combined isotope approach (δ15NNO3, δ18ONO3 and δ11B) in a large mixed-use watershed in southern Alberta, Canada. Sci. Total Environ., 703, 135043, https://doi.org/10.1016/j.scitotenv.2019.135043
  20. Kwon, E., Park, J., Park, W.B., Kang, B.R., and Woo, N.C. (2021) Nitrate contamination of coastal groundwater: Sources and transport mechnisms along a volcanic aquifer. Sci. Total Environ., v.768, 145204. https://doi.org/10.1016/j.scitotenv.2021.145204.
  21. Kwon, P., Park, M., Lee, Y., Cho, Y., Noh, C., Jung, W., Kim, J. and Yu, S. (2017) Evaluation of Water Quality Characteristic at Kyeongan Stream Using the Flow-Loading Equation and Factor Analysis. Ecology and Resilient Infrastructure, v.4(4), 2017.12, 226-236(11 pages). doi: https://doi.org/10.17820/eri.2017.4.4.226
  22. Lee, J.H. and Park, H.K. (2010) Estimating the Nitrogen and Phosphorus Loads of Wintering WaterfowlFeces in Lake Paldang. J. Korean Soc. Water Environ., v.26, n.2, p.311-316.
  23. Lee, K.S., Bong, Y.S., Lee, D., Kim, Y. and Kim, K. (2008). Tracing the sources of nitrate in the Han River watershed in Korea, using δ15N-NO3- and δ18O-NO3- values. Science of the Total Environment, v.395(2-3), p.117-124. https://doi.org/10.1016/j.scitotenv.2008.01.058
  24. Lee, S., Shin, J.Y., Lee, G., Sung, Y, Kimg, K.S., Lim, K.J. and Kim, J. (2018) Analysis of Water Pollutant Load Characteristics and Its Contributions During Dry season: Focussing on Major Streams Inflow into South-Han River of Chungju-dam Downstream. J. Korean Soc. Environ. Eng., v.40(6), p.247-257. https://doi.org/10.4491/KSEE.2018.40.6.247
  25. Maxcy, K.F. (1950) Report on relation of nitrate nitrogen concentration in well waters to the occurrence of methemoglobinemia in infants. Acad. Sci-Research Council Sanit. Eng. and Environmental Bulletin, 264 p.
  26. National Institute of Environmental Research (NIER) (2006) Advanced total pollution load management system for development and preservation, National Institute of Environmental Research.
  27. National Institute of Environmental Research (NIER) (2020) Total pollution load management system diagnosis and future vision, National Institute of Environmental Research.
  28. Oh, T.S., Kim, C.H., Kim, S.M., Jang, M.J., Park, Y.J. and Cho, Y.K. (2016) Effects of Paddy Soil Chemical Changes and Yield Components of Rice in Accordance with the Age and Usage of Organic Fertilizer and Chemical Fertilizers. Korean J. Org. Agric., v.24(4), p.969-980. https://doi.org/10.11625/KJOA.2016.24.4.969.
  29. Smil, V. (1999) Nitrogen in crop production: an account of global flows. Global Biogeochem. Cycles, v.13, p.465-472. https://doi.org/10.1029/1999GB900015
  30. Son, M., Chung, H.S., Park, C.H., Park, J.H., Lim, C. and Kim, K. (2018) The change of phytoplankton community structure and water quality in the Juksan weir of the Yeongsan river watershed. Environmental Biology Research, v.36(4), p.591-600. https://doi.org/10.11626/KJEB.2018.36.4.591
  31. Tamborski, J., Brown, C., Bokuniewicz, H., Cochran, J.K. and Rasbury, E.T. (2020) Investigating Boron Isotopes for Identifying Nitrogen Sources Supplied by Submarine Groundwater Discharge to Coastal Waters. Front. Environ. Sci., v.8, 126. https://doi.org/10.3389/fenvs.2020.00126.
  32. WAMIS (Water Resources Management Information System). http://www.wamis.go.kr/watermap/
  33. Williamson, A.K., Munn, M.D., Ryker, S.J., Wagner, R.J., Ebbert, J.C. and Vanderpool, A.M. (1998) Water Quality in the Central Columbia Plateau, Washington and Idaho, 1992-95. U.S. Geological Survey Circular 1144. https://doi.org/10.3133/cir1144
  34. Yongin city hall. https://www.yongin.go.kr.
  35. Yoo, H.J. and Park, S.S. (2003) Application of a loading function model to estimate Monthly TN and TP loads in Kyungan stream watershed. J. Kor. Soc. Water Quality, v.19(4), p.367-375.