DOI QR코드

DOI QR Code

Principle and Application of 'Image-mapping' in-situ U-Pb Carbonate Age-dating

'Image-mapping' in-situ U-Pb 탄산염광물 연대측정법의 원리 및 적용

  • Ha Kim (Department of Earth System Sciences, Yonsei University) ;
  • Seongsik Hong (Department of Earth System Sciences, Yonsei University) ;
  • Chaewon Park (Department of Earth System Sciences, Yonsei University) ;
  • Jihye Oh (Deep-sea and Seabed Mineral Resources Research Center, Korea Institute of Ocean Science and Technology) ;
  • Jonguk Kim (Deep-sea and Seabed Mineral Resources Research Center, Korea Institute of Ocean Science and Technology) ;
  • Yungoo Song (Department of Earth System Sciences, Yonsei University)
  • 김하 (연세대학교 지구시스템과학과) ;
  • 홍성식 (연세대학교 지구시스템과학과) ;
  • 박채원 (연세대학교 지구시스템과학과) ;
  • 오지혜 (한국해양과학기술원 심해저광물자원연구센터) ;
  • 김종욱 (한국해양과학기술원 심해저광물자원연구센터) ;
  • 송윤구 (연세대학교 지구시스템과학과)
  • Received : 2023.02.14
  • Accepted : 2023.04.27
  • Published : 2023.04.28

Abstract

We introduce a new 'image-mapping' in-situ U-Pb dating method using LA-ICP-MS, proposed by Drost et al. (2018), and show the characteristics and usability of this method through several examples of absolute age results determined by first applying it to samples from the Joseon Supergroup of the Early Paleozoic Era in Korea. Unlike the previous in-situ spot analysis, this in-situ U-Pb dating method for carbonate minerals can determine the absolute age with high reliability by applying the 'image-mapping' method of micro-sized domains based on micro-textural observation, as well as determine the absolute age of multiple geological 'events' that occurred after deposition. This was confirmed in the case of determining the syn-depositional age and the multiple post-depositional ages from carbonate minerals of the Makgol and the Daegi Formations. Therefore, if the 'image-mapping' in-situ U-Pb dating method is applied to determine the absolute age of various types of carbonate minerals that exist in various geological environments throughout the geologic era, it will be possible to secure new geological age information.

본 연구는 Drost et al. (2018)이 제안한 LA-ICP-MS를 이용한 새로운 'image-mapping' in-situ U-Pb 연대측정법을 소개하고, 국내 전기고생대 조선누층군 시료를 대상으로 처음 적용하여 결정한 절대연대 결과 사례를 통해 이 방법의 특성과 활용성을 알리고자 한다. 탄산염광물을 대상으로 하는 'image-mapping' in-situ U-Pb 연대측정법은 미세조직 관찰을 기초로 미소영역의 'image-mapping' 법을 적용하여, 기존의 점 분석(spot analysis) in-situ 분석법과는 달리, 신뢰성 높은 절대연대를 결정할 수 있을 뿐 아니라, 생성 이후 일어난 복수의 지질학적 '사건' 절대연대도 결정할 수 있다. 막골층과 대기층 탄산염광물로부터 퇴적연대와 함께 복수의 퇴적 이후의 연대를 결정한 적용 사례에서 이를 확인하였다. 따라서 이 같은 'image-mapping' in-situ U-Pb 연대측정법이 전 지질시대에 걸쳐 다양한 지질학적 환경에서 존재하는 다양한 형태의 탄산염광물 절대연대 결정에 적용된다면, 새로운 지질학적 연대정보 확보가 가능할 것이다.

Keywords

Acknowledgement

본 연구는 한국연구재단의 이공학개인기초연구지원사업(Grant No.2018051418)의 일환으로 수행되었음을 밝힙니다.

References

  1. Burisch, M., Gerdes, A., Walter, B.F., Neumann, U., Fettel, M. and Markl, G. (2017) Methane and the origin of five-element veins: Mineralogy, age, fluid inclusion chemistry and ore forming processes in the Odenwald, SW Germany. Ore Geology Reviews, v.81, p.42-61. doi: 10.1016/j.oregeorev.2016.10.033
  2. Choi, D.K., Chough, S.K., Kwon, Y.K., Lee, S.B., Woo, J., Kang, I. and Lee, D.J. (2004) Taebaek group (Cambrian-Ordovician) in the Seokgaejae section, Taebaeksan Basin: a refined lower Paleozoic stratigraphy in Korea. Geosciences Journal, v.8, p.125-151. doi: 10.1007/BF02910190
  3. Drost, K., Chew, D., Petrus, J.A., Scholze, F., Woodhead, J.D., Schneider, J.W. and Harper, D.A. (2018) An image mapping approach to U-Pb LA-ICP-MS carbonate dating and applications to direct dating of carbonate sedimentation. Geochemistry, Geophysics, Geosystems, v.19(12), p.4631-4648. doi: 10.1029/2018GC007850
  4. Godeau, N., Deschamps, P., Guihou, A., Leonide, P., Tendil, A., Gerdes, A., et al. (2018) U-Pb dating of calcite cement and diagenetic history in microporous carbonate reservoirs: Case of the Urgonian limestone, France. Geology, v.46(3), p.247-250. doi: 10.1130/G39905.1
  5. Hansman, R.J., Albert, R., Gerdes, A. and Ring, U. (2018) Absolute ages of multiple generations of brittle structures by U-Pb dating of calcite. Geology, v.46(3), p.207-210. doi: 10.1130/G39822.1
  6. Li, Q., Parrish, R.R., Horstwood, M.S.A. and McArthur, J.M. (2014) U-Pb dating of cements in Mesozoic ammonites. Chemical Geology, v.376, p.76-83. doi: 10.1016/j.chemgeo.2014.03.020
  7. Longerich, H.P., Jackson, S.E. and Gunther, D. (1996). Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. Journal of Analytical Atomic Spectrometry, 11(9), 899-904. doi: 10.1039/JA9961100899
  8. Ludwig, K.R. (2012) Isoplot 4.15: a geochronological toolkit for Microsoft Excel. Berkeley Geochronological Center. Berkeley Geochronology Center Special Publication (Version 4.15) Berkeley Geochronology Center.
  9. Nuriel, P., Weinberger, R., Kylander-Clark, A.R.C., Hacker, B.R. and Craddock, J.P. (2017) The onset of the Dead Sea transform based on calcite age-strain analyses. Geology, v.45(7), p.587-590. doi: 10.1130/G38903.1
  10. Pagel, M., Bonifacie, M., Schneider, D.A., Gautheron, C., Brigaud, B., Calmels, D., et al. (2018) Improving paleohydrological and diagenetic reconstructions in calcite veins and breccia of a sedimentary basin by combining Δ47 temperature, δ18O water and U-Pb age. Chemical Geology, v.481, p.1-17. doi: 10.1016/j.chemgeo.2017.12.026
  11. Park, C., Kim, H. and Song, Y. (2018) Mineralogical, micro-textural, and geochemical characteristics for the carbonate rocks of the lower makgol formation in seokgaejae section. Economic and Environmental Geology, v.51(4), p.323-343. doi: 10.9719/EEG.2018.51.4.323
  12. Paton, C., Woodhead, J.D., Hellstrom, J.C., Hergt, J.M., Greig, A. and Maas, R. (2010) Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochemistry, Geophysics, Geosystems, v.11(3). doi: 10.1029/2009GC002618
  13. Paton, C., Hellstrom, J., Paul, B., Woodhead, J. and Hergt, J. (2011) Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, v.26(12), p.2508-2518. doi: 10.1039/C1JA10172B
  14. Pearce, N.J., Perkins, W.T., Westgate, J.A., Gorton, M.P., Jackson, S.E., Neal, C.R. and Chenery, S.P. (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsletter, v.21(1), p.115-144. doi: 10.1111/j.1751-908X.1997.tb00538.x
  15. Rasbury, E.T. and Cole, J.M. (2009) Directly dating geologic events: U-Pb dating of carbonates. Reviews of Geophysics, v.47, RG3001. doi: 10.1029/2007RG000246
  16. Ring, U. and Gerdes, A. (2016) Kinematics of the Alpenrhein-Bodensee graben system in the Central Alps: Oligocene/Miocene transtension due to formation of the Western Alps arc. Tectonics, v.35(6), p.1367-1391. doi: 10.1002/2015TC004085
  17. Roberts, N.M. and Walker, R.J. (2016) U-Pb geochronology of calcite-mineralized faults: Absolute timing of rift-related fault events on the northeast Atlantic margin. Geology, v.44(7), p.531-534. doi: 10.1130/G37868.1
  18. Roberts, N.M., Rasbury, E.T., Parrish, R.R., Smith, C.J., Horstwood, M.S. and Condon, D.J. (2017) A calcite reference material for LA-ICP-MS U-Pb geochronology. Geochemistry, Geophysics, Geosystems, v.18(7), p.2807-2814. doi: 10.1002/2016GC006784
  19. Roberts, N.M., Drost, K., Horstwood, M.S., Condon, D.J., Chew, D., Drake, H., ... and Lee, J.K. (2020) Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb carbonate geochronology: strategies, progress, and limitations. Geochronology, v.2(1), p.33-61. doi: 10.5194/gchron-2-33-2020