DOI QR코드

DOI QR Code

강자성체와 나노사이즈의 프러시안 블루가 합성된 새로운 형태의 복합체 제조 및 최적의 적용 조건 도출

Manufacture of Novel Composites Synthesized with Ferromagnetic and Nano-Sized Prussian Blue and D eriving Optimum Conditions

  • 김종규 (신한대학교 에너지공학과)
  • Jong Kyu Kim (Department of Energy Engineering, Shinhan University)
  • 투고 : 2023.03.09
  • 심사 : 2023.03.28
  • 발행 : 2023.04.27

초록

In this study, a new type of composite material combined with carbonyl iron, a relatively strong ferromagnetic material, was prepared to overcome the current application limitations of Prussian blue, which is effective in removing radioactive cesium. The surface of the prepared composite was analyzed using SEM and XRD, and it was confirmed that nano-sized Prussian Blue was synthesized on the particle surface. In order to evaluate the cesium removal ability, 0.2 g of the composite prepared for raw cesium aquatic solution at a concentration of 5 ㎍ was added and reacted, resulting in a cesium removal rate of 99.5 %. The complex follows Langmuir's adsorption model and has a maximum adsorption amount (qe) of 79.3 mg/g. The Central Composite Design (CCD) of the Response Surface Method (RSM) was used to derive the optimal application conditions of the prepared composite. The optimal application conditions achieved using Response optimization appeared at a stirring speed of pH 7, 17.6 RPM. The composite manufactured through this research is a material that overcomes the Prussian Blue limit in powder form and is considered to be excellent economically and environmentally when applied to a cesium removal site.

키워드

과제정보

This work was supported by the Shinhan University Research Fund, 2022.

참고문헌

  1. M. Lusa, M. Bomberg, S. Virtanen, J. Lempinen, H. Aromaa, J. Knuutinen and J. Lehto, J. Environ. Radioact., 147, 22 (2015).
  2. N. Singh, A. Goyal and M. Mohan, J. Electron Spectrosc. Relat. Phenom., 229, 94 (2018).
  3. L. T. Nagy, H. Ming, I. Masataka, N. Masanobu and Y. Yusuke, J. Mater. Chem., 22, 18261 (2012).
  4. D. Parajuli, H. Tanaka, Y. Hakuta, K. Minami, S. Fukuda, K. Umeoka, R. Kamimura, Y. Hayashi, M. Ouchi and T. Kawamoto, Environ. Sci. Technol., 47, 3800 (2013).
  5. N. Suzuki, S. Ozawa, K. Ochi, T. Chikuma and Y. Watanabe, J. Chem. Technol. Biotechnol., 88, 1603 (2013).
  6. K. Kosaka, M. Asami, N. Kobashigawa, K. Ohkubo, H. Terada, N. Kishida and M. Akiba, Water Res., 46, 4397 (2012).
  7. S. Sakamoto and Y. Kawase, J. Environ. Radioact., 165, 151 (2012).
  8. S. R. H. Vanderheydem, J. Yperman, R. Carleer and S. Schreurs, Chemosphere, 202, 569 (2018).
  9. X. Liu, G.-R. Chen, D.-J. Lee, T. Kawamoto, H. Tanaka, M.-L. Chen and Y.-K. Luo, J. Korean Soc. Environ. Eng., 34, 234 (2012).
  10. B. Hu, B. Fugetsu, H. Yu and Y. Abe, J. Hazard. Mater., 217-218, 85 (2012).
  11. C. Vincent, Y. Barre, T. Vincent, J.-M. Taulemesse, M. Robitzer and E. Guibal, J. Hazard. Mater., 287, 171 (2015).
  12. D. Parajuli, A. Kitajima, A. Takahashi, H. Tanaka, H. Ogawa, Y. Hakuta, K. Yoshino, T. Funahashi, M. Yamaguchi, M. Osada and T. Kawamoto, J. Environ. Radioact., 151, 233 (2016).
  13. M. S. Gasser, M. I. Aly and H. F. Aly, Part. Sci. Technol., 37, 468 (2019).
  14. C. Thammawong, P. Opaprakasit, P. Tangboriboonrat and P. Sreearunothai, J. Nanopart. Res., 15, 1689 (2013).
  15. H. Yang, H. Li, J. Zhai, L. Sun, Y. Zhao and H. Yu, Chem. Eng. J., 246, 10 (2014).
  16. S.-M. Kang, M. Rethinasabapathy, S. K. Hwang, G.-W. Lee, S.-C. Jang, C. H. Kwak, S.-R. Choe and Y. S. Huh, Chem. Eng. J., 314, 218 (2018).
  17. A. A. Kaufman, R. O. Hansen and R. L. K. Kleinberg, Methods Geochem. Geophys., 42, 207 (2008).
  18. P. D. C. Guio, T. Proll and H. Hofbauer, Powder Technol., 239, 147 (2013).
  19. S.-C. Jang, J.-Y. Kim, Y. S. Huh and C. Roh, J. Radiat. Ind., 9, 127 (2015).
  20. X. Chen, Information, 6, 14 (2015).
  21. N. Hamzah, R. Osman and M. A. Yarmo, Malays. J. Anal. Sci., 17, 38 (2013).
  22. T. Sangvanich, V. Sukwarotwat, R. J. Wiacek, R. M. Grudzein, G. E. Fryxell, R. S. Addleman, C. Timchalk and W. Yantasee, J. Hazard. Mater., 182, 225 (2010).