DOI QR코드

DOI QR Code

An overview bioactive compounds on the skin of frogs (Anura)

  • Tran Thi Huyen (Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City) ;
  • Phan Thi Hoang Anh (Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City) ;
  • Nguyen Thi Anh Hong (Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City) ;
  • Nguyen Ngoc Duyen (Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City) ;
  • Le Pham Tan Quoc (Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City) ;
  • Tran Dinh Thang (Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City)
  • Received : 2022.12.12
  • Accepted : 2023.01.18
  • Published : 2023.04.30

Abstract

The robust development of frog farming offered high economic benefits but created a large waste residue of frog bones and skin that received little attention. Over the years, inedible by-products have often been processed into biomolecules of potential value and environmental benefits, such as collagen, gelatin, and bioactive peptides. An overview of bioactive compounds on frog skins from various countries indicated that brevinin was the most abundant biological peptide found in frog skin. Other remaining compounds also possessed their highlighted activities, including antibacterial, stimulating insulin release and gastric hormone release, anti-cancer, and neuroregulatory. Notably, various components have been analyzed in the structure and sequence to give meaningful insight into clustering components related to their biological activity. This review may create a source of raw materials for the developmental research of by-products from frog skin and concomitantly reduce environmental pollution.

Keywords

References

  1. Abdel-Wahab YHA, Patterson S, Flatt PR, Conlon JM. Brevinin-2-related peptide and its [D4K] analogue stimulate insulin release in vitro and improve glucose tolerance in mice fed a high fat diet. Horm Metab Res. 2010;42:652-6.  https://doi.org/10.1055/s-0030-1254126
  2. Abdel-Wahab YHA, Power GJ, Flatt PR, Woodhams DC, Rollins-Smith LA, Conlon JM. A peptide of the phylloseptin family from the skin of the frog Hylomantis lemur (Phyllomedusinae) with potent in vitro and in vivo insulin-releasing activity. Peptides. 2008;29:2136-43.  https://doi.org/10.1016/j.peptides.2008.09.006
  3. Ali MF, Lips KR, Knoop FC, Fritzsch B, Miller C, Conlon JM. Antimicrobial peptides and protease inhibitors in the skin secretions of the crawfish frog, Rana areolata. Biochim Biophys Acta Proteins Proteom. 2002;1601:55-63.  https://doi.org/10.1016/S1570-9639(02)00432-6
  4. Amiche M, Ducancel F, Lajeunesse E, Boulain JC, Menez A, Nicolas P. Molecular cloning of a cDNA encoding the precursor of adenoregulin from frog skin: relationships with the vertebrate defensive peptides, dermaseptins. Biochem Biophys Res Commun. 1993;191:983-90.  https://doi.org/10.1006/bbrc.1993.1314
  5. Amiche M, Seon AA, Wroblewski H, Nicolas P. Isolation of dermatoxin from frog skin, an antibacterial peptide encoded by a novel member of the dermaseptin genes family. Eur J Biochem. 2000;267:4583-92.  https://doi.org/10.1046/j.1432-1327.2000.01514.x
  6. Babbar N. An introduction to alkaloids and their applications in pharmaceutical chemistry. Pharma Innov J. 2015;4:74-5. 
  7. Balboni F, Bernabei PA, Barberio C, Sanna A, Rossi Ferrini P, Delfino G. Cutaneous venom of Bombina variegata pachypus (Amphibia, Anura): effects on the growth of the human HL 60 cell line. Cell Biol Int Rep. 1992;16:329-38.  https://doi.org/10.1016/S0309-1651(06)80138-4
  8. Barra D, Erspamer GF, Simmaco M, Bossa F, Melchiorri P, Erspamer V. Rohdei-litorin: a new peptide from the skin of Phyllomedusa rohdei. FEBS Lett. 1985;182:53-6.  https://doi.org/10.1016/0014-5793(85)81152-2
  9. Bolton SK, Dickerson K, Saporito RA. Variable alkaloid defenses in the dendrobatid poison frog Oophaga pumilio are perceived as differences in palatability to arthropods. J Chem Ecol. 2017;43:273-89.  https://doi.org/10.1007/s10886-017-0827-y
  10. Brand GD, Leite JRSA, Silva LP, Albuquerque S, Prates MV, Azevedo RB, et al. Dermaseptins from Phyllomedusa oreades and Phyllomedusa distincta: anti-trypanosoma cruzi activity without cytotoxicity to mammalian cells. J Biol Chem. 2002;277:49332-40.  https://doi.org/10.1074/jbc.M209289200
  11. Brown GB, Kim YH, Kuntzel H, Mosher HS. Chemistry and pharmacology of skin toxins from the frog Atelopus zeteki (Atelopidtoxin: Zetekitoxin). Toxicon. 1977;15:115-28.  https://doi.org/10.1016/0041-0101(77)90030-7
  12. Carta P, Conlon JM, Andrea Scorciapino M. Conformational change following conversion of inactive rhinophrynin-33 to bioactive rhinophrynin-27 in the skin of the frog Rhinophrynus dorsalis. Biochimie. 2021;181:162-8.  https://doi.org/10.1016/j.biochi.2020.12.011
  13. Caruso G. Fishery wastes and by-products: a resource to be valorised. J Fish Sci. 2015;9:80-3. 
  14. Chinchar VG, Wang J, Murti G, Carey C, Rollins-Smith L. Inactivation of frog virus 3 and channel catfish virus by esculentin-2P and ranatuerin-2P, two antimicrobial peptides isolated from frog skin. Virology. 2001;288:351-7.  https://doi.org/10.1006/viro.2001.1080
  15. Clark DP, Durell S, Maloy WL, Zasloff M. Ranalexin: a novel antimicrobial peptide from bullfrog (Rana catesbeiana) skin, structurally related to the bacterial antibiotic, polymyxin. J Biol Chem. 1994;269:10849-55.  https://doi.org/10.1016/S0021-9258(17)34136-4
  16. Chen T, Li L, Zhou M, Rao P, Walker B, Shaw C. Amphibian skin peptides and their corresponding cDNAs from single lyophilized secretion samples: identification of novel brevinins from three species of Chinese frogs. Peptides. 2006;27:42-8.  https://doi.org/10.1016/j.peptides.2005.06.024
  17. Conlon JM. Reflections on a systematic nomenclature for antimicrobial peptides from the skins of frogs of the family Ranidae. Peptides. 2008;29:1815-9.  https://doi.org/10.1016/j.peptides.2008.05.029
  18. Conlon JM, Abdel-Wahab YHA, Flatt PR, Leprince J, Vaudry H, Jouenne T, et al. A glycine-leucine-rich peptide structurally related to the plasticins from skin secretions of the frog Leptodactylus laticeps (Leptodactylidae). Peptides. 2009;30:888-92.  https://doi.org/10.1016/j.peptides.2009.01.008
  19. Conlon JM, Abraham B, Sonnevend A, Jouenne T, Cosette P, Leprince J, et al. Purification and characterization of antimicrobial peptides from the skin secretions of the carpenter frog Rana virgatipes (Ranidae, Aquarana). Regul Pept. 2005a;131:38-45.  https://doi.org/10.1016/j.regpep.2005.06.003
  20. Conlon JM, Al-Ghaferi N, Abraham B, Sonnevend A, Coquet L, Leprince J, et al. Antimicrobial peptides from the skin of the Tsushima brown frog Rana tsushimensis. Comp Biochem Physiol C Toxicol Pharmacol. 2006;143:42-9.  https://doi.org/10.1016/j.cbpc.2005.11.022
  21. Conlon JM, Kolodziejek J, Nowotny N. Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochim Biophys Acta Proteins Proteom. 2004b;1696:1-14.  https://doi.org/10.1016/j.bbapap.2003.09.004
  22. Conlon JM, Kolodziejek J, Nowotny N, Leprince J, Vaudry H, Coquet L, et al. Characterization of antimicrobial peptides from the skin secretions of the Malaysian frogs, Odorrana hosii and Hylarana picturata (Anura: Ranidae). Toxicon. 2008b;52:465-73.  https://doi.org/10.1016/j.toxicon.2008.06.017
  23. Conlon JM, Power GJ, Abdel-Wahab YHA, Flatt PR, Jiansheng H, Coquet L, et al. A potent, non-toxic insulin-releasing peptide isolated from an extract of the skin of the Asian frog, Hylarana guntheri (Anura: Ranidae). Regul Pept. 2008a;151:153-9.  https://doi.org/10.1016/j.regpep.2008.04.002
  24. Conlon JM, Sonnevend A, Jouenne T, Coquet L, Cosquer D, Vaudry H, et al. A family of acyclic brevinin-1 peptides from the skin of the Ryukyu brown frog Rana okinavana. Peptides. 2005b;26:185-90.  https://doi.org/10.1016/j.peptides.2004.08.008
  25. Conlon JM, Sonnevend A, Patel M, Al-Dhaheri K, Nielsen PF, Kolodziejek J, et al. A family of brevinin-2 peptides with potent activity against Pseudomonas aeruginosa from the skin of the Hokkaido frog, Rana pirica. Regul Pept. 2004a;118:135-41.  https://doi.org/10.1016/j.regpep.2003.12.003
  26. Cuesta SA, Reinoso C, Morales F, Pilaquinga F, Moran-Marcillo G, Proano-Bolanos C, et al. Novel antimicrobial cruzioseptin peptides extracted from the splendid leaf frog, Cruziohyla calcarifer. Amino Acids. 2021;53:853-68.  https://doi.org/10.1007/s00726-021-02986-w
  27. Daly JW, Brown GB, Mensah-Dwumah M, Myers CW. Classification of skin alkaloids from neotropical poison-dart frogs (Dendrobatidae). Toxicon. 1978;16:163-88.  https://doi.org/10.1016/0041-0101(78)90036-3
  28. Daly JW, Garraffo HM, Spande TF, Yeh HJC, Peltzer PM, Cacivio PM, et al. Indolizidine 239Q and quinolizidine 275I. Major alkaloids in two Argentinian bufonid toads (Melanophryniscus). Toxicon. 2008;52:858-70.  https://doi.org/10.1016/j.toxicon.2008.08.016
  29. Daly JW, Gusovsky F, Myers CW, Yotsu-Yamashita M, Yasumoto T. First occurrence of tetrodotoxin in a dendrobatid frog (Colostethus inguinalis), with further reports for the bufonid genus Atelopus. Toxicon. 1994;32:279-85.  https://doi.org/10.1016/0041-0101(94)90081-7
  30. Daly JW, Highet RJ, Myers CW. Occurrence of skin alkaloids in non-dendrobatid frogs from Brazil (Bufonidae), Australia (Myobatrachidae) and Madagascar (Mantellinae). Toxicon. 1984;22:905-19.  https://doi.org/10.1016/0041-0101(84)90182-X
  31. Daly JW, Kaneko T, Wilham J, Garraffo HM, Spande TF, Espinosa A, et al. Bioactive alkaloids of frog skin: combinatorial bioprospecting reveals that pumiliotoxins have an arthropod source. Proc Natl Acad Sci USA. 2002;99:13996-4001.  https://doi.org/10.1073/pnas.222551599
  32. Daly JW, Myers CW, Whittaker N. Further classification of skin alkaloids from neotropical poison frogs (Dendrobatidae), with a general survey of toxic/noxious substances in the amphibia. Toxicon. 1987;25:1023-95.  https://doi.org/10.1016/0041-0101(87)90265-0
  33. Daly JW, Noimai N, Kongkathip B, Kongkathip N, Wilham JM, Garraffo HM, et al. Biologically active substances from amphibians: preliminary studies on anurans from twenty-one genera of Thailand. Toxicon. 2004;44:805-15.  https://doi.org/10.1016/j.toxicon.2004.08.016
  34. Daly JW, Spande TF, Garraffo HM. Alkaloids from amphibian skin: a tabulation of over eight-hundred compounds. J Nat Prod. 2005;68:1556-75.  https://doi.org/10.1021/np0580560
  35. de Sousa NA, Marani MM, Lopes ALF, Silva EM, Barbosa EA, Vasconcelos AG, et al. BR-bombesin: a novel bombesin-related peptide from the skin secretion of the Chaco tree frog (Boana raniceps) with physiological gastric effects. Amino Acids. 2022;54:733-47.  https://doi.org/10.1007/s00726-021-03114-4
  36. Di Grazia A, Cappiello F, Imanishi A, Mastrofrancesco A, Picardo M, Paus R, et al. The frog skin-derived antimicrobial peptide esculentin-1a(1-21)NH2 promotes the migration of human HaCaT keratinocytes in an EGF receptor-dependent manner: a novel promoter of human skin wound healing? PLOS ONE. 2015;10:e0128663. 
  37. Dourado FS, Leite JRSA, Silva LP, Melo JAT, Bloch C Jr, Schwartz EF. Antimicrobial peptide from the skin secretion of the frog Leptodactylus syphax. Toxicon. 2007;50:572-80.  https://doi.org/10.1016/j.toxicon.2007.04.027
  38. Edelstein MC, Gretz JE, Bauer TJ, Fulgham DL, Alexander NJ, Archer DF. Studies on the in vitro spermicidal activity of synthetic magainins. Fertil Steril. 1991;55:647-9. https://doi.org/10.1016/S0015-0282(16)54205-8
  39. Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov Today. 2015;20:122-8.  https://doi.org/10.1016/j.drudis.2014.10.003
  40. Ghavami S, Asoodeh A, Klonisch T, Halayko AJ, Kadkhoda K, Kroczak TJ, et al. Brevinin-2R1  semi-selectively kills cancer cells by a distinct mechanism, which involves the lysosomal-mitochondrial death pathway. J Cell Mol Med. 2008;12:1005-22.  https://doi.org/10.1111/j.1582-4934.2008.00129.x
  41. Goraya J, Knoop FC, Conlon JM. Ranatuerins: antimicrobial peptides isolated from the skin of the American bullfrog, Rana catesbeiana. Biochem Biophys Res Commun. 1998;250:589-92.  https://doi.org/10.1006/bbrc.1998.9362
  42. Goraya J, Wang Y, Li Z, O'Flaherty M, Knoop FC, Platz JE, et al. Peptides with antimicrobial activity from four different families isolated from the skins of the North American frogs Rana luteiventris, Rana berlandieri and Rana pipiens. Eur J Biochem. 2000;267:894-900.  https://doi.org/10.1046/j.1432-1327.2000.01074.x
  43. Haney EF, Hancock REW. Peptide design for antimicrobial and immunomodulatory applications. Pept Sci. 2013;100:572-83.  https://doi.org/10.1002/bip.22250
  44. Hovey KJ, Seiter EM, Johnson EE, Saporito RA. Sequestered alkaloid defenses in the dendrobatid poison frog Oophaga pumilio provide variable protection from microbial pathogens. J Chem Ecol. 2018;44:312-25.  https://doi.org/10.1007/s10886-018-0930-8
  45. Ideia P, Pinto J, Ferreira R, Figueiredo L, Spinola V, Castilho PC. Fish processing industry residues: a review of valuable products extraction and characterization methods. Waste Biomass Valorization. 2020;11:3223-46.  https://doi.org/10.1007/s12649-019-00739-1
  46. Isaacson T, Soto A, Iwamuro S, Knoop FC, Conlon JM. Antimicrobial peptides with atypical structural features from the skin of the Japanese brown frog Rana japonica. Peptides. 2002;23:419-25.  https://doi.org/10.1016/S0196-9781(01)00634-9
  47. Kim JH, Lee JO, Jung JH, Lee SK, You GY, Park SH, et al. Gaegurin-6 stimulates insulin secretion through calcium influx in pancreatic β Rin5mf cells. Regul Pept. 2010;159:123-8.  https://doi.org/10.1016/j.regpep.2009.07.014
  48. Kim YH, Brown GB, Mosher FA. Tetrodotoxin: occurrence in atelopid frogs of Costa Rica. Science. 1975;189:151-2.  https://doi.org/10.1126/science.1138374
  49. Khiari Z, Rico D, Martin-Diana AB, Barry-Ryan C. Structure elucidation of ACE-inhibitory and antithrombotic peptides isolated from mackerel skin gelatine hydrolysates. J Sci Food Agric. 2014;94:1663-71.  https://doi.org/10.1002/jsfa.6476
  50. Kumari VK, Nagaraj R. Structure-function studies on the amphibian peptide brevinin 1E: translocating the cationic segment from the C-terminal end to a central position favors selective antibacterial activity. J Pept Res. 2001;58:433-41.  https://doi.org/10.1034/j.1399-3011.2001.00924.x
  51. Lai R, Zheng YT, Shen JH, Liu GJ, Liu H, Lee WH, et al. Antimicrobial peptides from skin secretions of Chinese red belly toad Bombina maxima. Peptides. 2002;23:427-35.  https://doi.org/10.1016/S0196-9781(01)00641-6
  52. Le MQ. Frog value chain case study in Ho Chi Minh City Vietnam [M.S. thesis]. Norway: University of Tromso; 2012. 
  53. Leite JRSA, Silva LP, Rodrigues MIS, Prates MV, Brand GD, Lacava BM, et al. Phylloseptins: a novel class of anti-bacterial and anti-protozoan peptides from the Phyllomedusa genus. Peptides. 2005;26:565-73.  https://doi.org/10.1016/j.peptides.2004.11.002
  54. Li J, Xu X, Yu H, Yang H, Huang Z, Lai R. Direct antimicrobial activities of PR-bombesin. Life Sci. 2006;78:1953-6.  https://doi.org/10.1016/j.lfs.2005.08.034
  55. Li Y, Xiang Q, Zhang Q, Huang Y, Su Z. Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides. 2012;37:207-15.  https://doi.org/10.1016/j.peptides.2012.07.001
  56. Lin Y, Chen T, Zhou M, Wang L, Su S, Shaw C. Ranatensin-hl: a bombesin-related tridecapeptide from the skin secretion of the broad-folded frog, Hylarana latouchii. Molecules. 2017;22:1110. 
  57. Manika D, Dasgupta SC, Gomes A. Immunomodulatory and antineoplastic activity of common Indian toad (Bufo melanostictus, Schneider) skin extract. Indian J Pharmacol. 1998;30:311-7. 
  58. Marenah L, Flatt PR, Orr DF, McClean S, Shaw C, Abdel-Wahab YHA. Brevinin-1 and multiple insulin-releasing peptides in the skin of the frog Rana palustris. J Endocrinol. 2004a;181:347-54.  https://doi.org/10.1677/joe.0.1810347
  59. Marenah L, Flatt PR, Orr DF, McClean S, Shaw C, Abdel-Wahab YHA. Skin secretion of the toad Bombina variegata contains multiple insulin-releasing peptides including bombesin and entirely novel insulinotropic structures. Biol Chem. 2004b;385:315-21.  https://doi.org/10.1515/BC.2004.027
  60. Marenah L, Flatt PR, Orr DF, Shaw C, Abdel-Wahab YHA. Skin secretions of Rana saharica frogs reveal antimicrobial peptides esculentins-1 and -1B and brevinins-1E and -2EC with novel insulin releasing activity. J Endocrinol. 2006;188:1-9.  https://doi.org/10.1677/joe.1.06293
  61. Mebs D, Schmidt K. Occurrence of tetrodotoxin in the frog Atelopus oxyrhynchus. Toxicon. 1989;27:819-22.  https://doi.org/10.1016/0041-0101(89)90049-4
  62. Mebs D, Yotsu-Yamashita M, Yasumoto T, Lotters S, Schluter A. Further report of the occurrence of tetrodotoxin in Atelopus species (family: Bufonidae). Toxicon. 1995;33:246-9.  https://doi.org/10.1016/0041-0101(94)00149-3
  63. Mechkarska M, Ojo OO, Meetani MA, Coquet L, Jouenne T, Abdel-Wahab YHA, et al. Peptidomic analysis of skin secretions from the bullfrog Lithobates catesbeianus (Ranidae) identifies multiple peptides with potent insulin-releasing activity. Peptides. 2011;32:203-8.  https://doi.org/10.1016/j.peptides.2010.11.002
  64. Montecucchi PC, De Castiglione R, Piani S, Gozzini L, Erspamer V. Amino acid composition and sequence of dermorphin, a novel opiate-like peptide from the skin of Phyllomedusa sauvagei. Int J Pept Protein Res. 1981;17:275-83.  https://doi.org/10.1111/j.1399-3011.1981.tb01993.x
  65. Montecucchi PC, Gozzini L, Erspamer V, Melchiorri P. Primary structure of tryptophan-containing peptides from skin extracts of Phyllomedusa rhodei (tryptophyllins). Int J Pept Protein Res. 1984;23:276-81.  https://doi.org/10.1111/j.1399-3011.1984.tb02720.x
  66. Mor A, Nicolas P. Isolation and structure of novel defensive peptides from frog skin. Eur J Biochem. 1994;219:145-54.  https://doi.org/10.1111/j.1432-1033.1994.tb19924.x
  67. Morikawa N, Hagiwara K, Nakajima T. Brevinin-1 and -2, unique antimicrobial peptides from the skin of the frog, Rana brevipoda porsa. Biochem Biophys Res Commun. 1992;189:184-90.  https://doi.org/10.1016/0006-291X(92)91542-X
  68. Nascimento A, Chapeaurouge A, Perales J, Sebben A, Sousa MV, Fontes W, et al. Purification, characterization and homology analysis of ocellatin 4, a cytolytic peptide from the skin secretion of the frog Leptodactylus ocellatus. Toxicon. 2007;50:1095-4. 
  69. Nascimento ACC, Zanotta LC, Kyaw CM, Schwartz ENF, Schwartz CA, Sebben A, et al. Ocellatins: new antimicrobial peptides from the skin secretion of the South American frog Leptodactylus ocellatus (Anura: Leptodactylidae). Protein J. 2004;23:501-8.  https://doi.org/10.1007/s10930-004-7877-z
  70. Ohsaki Y, Gazdar AF, Chen HC, Johnson BE. Antitumor activity of magainin analogues against human lung cancer cell lines. Cancer Res. 1992;52:3534-8. 
  71. Park HJ, Lee YL, Kwon HY, Shin WI, Suh SW. Isolation of bombesin-like substances from the skin of the frog, Bombina orientalis: its molecular heterogeneity and biological activity. Korean J Physiol Pharmacol. 1989;23:79-87. 
  72. Park JM, Jung JE, Lee BJ. Antimicrobial peptides from the skin of a Korean frog, Rana rugosa. Biochem Biophys Res Commun. 1994;205:948-54.  https://doi.org/10.1006/bbrc.1994.2757
  73. Park S, Park SH, Ahn HC, Kim S, Kim SS, Lee BJ, et al. Structural study of novel antimicrobial peptides, nigrocins, isolated from Rana nigromaculata. FEBS Lett. 2001;507:95-100.  https://doi.org/10.1016/S0014-5793(01)02956-8
  74. Perez Espitia PJ, de Fatima Ferreira Soares N, dos Reis Coimbra JS, de Andrade NJ, Souza Cruz R, Alves Medeiros EA. Bioactive peptides: synthesis, properties, and applications in the packaging and preservation of food. Compr Rev Food Sci Food Saf. 2012;11:187-204.  https://doi.org/10.1111/j.1541-4337.2011.00179.x
  75. Pokora M, Zambrowicz A, Dabrowska A, Eckert E, Setner B, Szoltysik M, et al. An attractive way of egg white protein by-product use for producing of novel anti-hypertensive peptides. Food Chem. 2014;151:500-5.  https://doi.org/10.1016/j.foodchem.2013.11.111
  76. Popovic S, Urban E, Lukic M, Conlon JM. Peptides with antimicrobial and anti-inflammatory activities that have therapeutic potential for treatment of acne vulgaris. Peptides. 2012;34:275-82.  https://doi.org/10.1016/j.peptides.2012.02.010
  77. Power O, Jakeman P, FitzGerald RJ. Antioxidative peptides: enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides. Amino Acids. 2013;44:797-820.  https://doi.org/10.1007/s00726-012-1393-9
  78. Preusser HJ, Habermehl G, Sablofski M, Schmall-Haury D. Antimicrobial activity of alkaloids from amphibian venoms and effects on the ultrastructure of yeast cells. Toxicon. 1975;13:285-8.  https://doi.org/10.1016/0041-0101(75)90135-X
  79. Qi F, Li A, Inagaki Y, Kokudo N, Tamura S, Nakata M, et al. Antitumor activity of extracts and compounds from the skin of the toad Bufo bufo gargarizans Cantor. International Immunopharmacology. 2011;11:342-9.  https://doi.org/10.1016/j.intimp.2010.12.007
  80. Renda T, D'Este L, Buffa R, Usellini L, Capella C, Vaccaro R, et al. Tryptophyllin-like immunoreactivity in rat adenohypophysis. Peptides. 1985;6:197-202.  https://doi.org/10.1016/0196-9781(85)90374-2
  81. Rodriguez A, Poth D, Schulz S, Vences M. Discovery of skin alkaloids in a miniaturized eleutherodactylid frog from Cuba. Biol Lett. 2011;7:414-8.  https://doi.org/10.1098/rsbl.2010.0844
  82. Rozek T, Waugh RJ, Steinborner ST, Bowie JH, Tyler MJ, Wallace JC. The maculatin peptides from the skin glands of the tree frog Litoria genimaculata: a comparison of the structures and antibacterial activities of maculatin 1.1 and caerin 1.1. J Pept Sci Off Publ Eur Pept Soc. 1998;4:111-5.  https://doi.org/10.1002/(SICI)1099-1387(199804)4:2<111::AID-PSC134>3.0.CO;2-8
  83. Savelyeva A, Ghavami S, Davoodpour P, Asoodeh A, Los MJ. An overview of Brevinin superfamily: structure, function and clinical perspectives. In: Grimm S, editor. Anticancer genes. London: Springer; 2014. p. 197-212. 
  84. Shindelman J, Mosher HS, Fuhrman FA. Atelopidtoxin from the Panamanian frog, Atelopus zeteki. Toxicon. 1969;7:315-9.  https://doi.org/10.1016/0041-0101(69)90031-2
  85. Sousa JC, Berto RF, Gois EA, Fontenele-Cardi NC, Honorio JE Jr, Konno K, et al. Leptoglycin: a new glycine/leucine-rich antimicrobial peptide isolated from the skin secretion of the South American frog Leptodactylus pentadactylus (Leptodactylidae). Toxicon. 2009;54:23-32.  https://doi.org/10.1016/j.toxicon.2009.03.011
  86. Suzuki S, Ohe Y, Okubo T, Kakegawa T, Tatemoto K. Isolation and characterization of novel antimicrobial peptides, rugosins A, B, and C, from the skin of the frog, Rana rugosa. Biochem Biophys Res Commun. 1995;212:249-54.  https://doi.org/10.1006/bbrc.1995.1963
  87. Varga JFA, Bui-Marinos MP, Katzenback BA. Frog skin innate immune defences: sensing and surviving pathogens. Front Immunol. 2019;9:3128. 
  88. Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016;44:D1087-93.  https://doi.org/10.1093/nar/gkv1278
  89. Wang H, Ran R, Yu H, Yu Z, Hu Y, Zheng H, et al. Identification and characterization of antimicrobial peptides from skin of Amolops ricketti (Anura: Ranidae). Peptides. 2012;33:27-34.  https://doi.org/10.1016/j.peptides.2011.10.030
  90. Wang H, Yan X, Yu H, Hu Y, Yu Z, Zheng H, et al. Isolation, characterization and molecular cloning of new antimicrobial peptides belonging to the brevinin-1 and temporin families from the skin of Hylarana latouchii (Anura: Ranidae). Biochimie. 2009;91:540-7.  https://doi.org/10.1016/j.biochi.2009.01.007
  91. Wang Z, Wang G. APD: the antimicrobial peptide database. Nucleic Acids Res. 2004;32:D590-2.  https://doi.org/10.1093/nar/gkh025
  92. Yotsu-Yamashita M, Kim YH, Dudley SC Jr, Choudhary G, Pfahnl A, Oshima Y, et al. The structure of zetekitoxin AB, a saxitoxin analog from the Panamanian golden frog Atelopus zeteki: a potent sodium-channel blocker. Proc Natl Acad Sci USA. 2004;101:4346-51.  https://doi.org/10.1073/pnas.0400368101
  93. Yotsu-Yamashita M, Mebs D, Yasumoto T. Tetrodotoxin and its analogues in extracts from the toad Atelopus oxyrhynchus (family: Bufonidae). Toxicon. 1992;30:1489-92.  https://doi.org/10.1016/0041-0101(92)90526-B
  94. Yotsu-Yamashita M, Tateki E. First report on toxins in the Panamanian toads Atelopus limosus, A. glyphus and A. certus. Toxicon. 2010;55:153-6.  https://doi.org/10.1016/j.toxicon.2009.07.003
  95. Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA. 1987;84:5449-53. https://doi.org/10.1073/pnas.84.15.5449