DOI QR코드

DOI QR Code

나노셀룰로오스 분말 개발과 폴리젖산 내 핵제 적용 연구

Development and Application of Cellulose Nanofiber Powder as a Nucleating Agent in Polylactic Acid

  • Sanghyeon Ju (Composites Research Division, Korea Institute of Materials Science (KIMS)) ;
  • Ajeong Lee (Composites Research Division, Korea Institute of Materials Science (KIMS)) ;
  • Youngeun Shin (Composites Research Division, Korea Institute of Materials Science (KIMS)) ;
  • Teahoon Park (Composites Research Division, Korea Institute of Materials Science (KIMS))
  • 투고 : 2023.03.20
  • 심사 : 2023.04.05
  • 발행 : 2023.04.30

초록

이 연구에서는 고압 균질기를 통해 제작된 CNF 수 분산액을 PLA에 적용시키는데 있어 비용과 생산 효율성을 고려하여 동결 건조 방식이 아닌 오븐 건조를 통해 수분을 제거한 ODCNF를 제조하였다. 건조 후 고형화된 CNF 분말을 생분해성 고분자인 PLA에 접목시켜 압출, 사출 공정에서 발생하는 전단응력으로 재분산을 유도하였고, 성공적으로 시편이 만들어졌다. 제작된 시편에 대하여 진행된 전계방사 전자현미경 측정을 통해 셀룰로오스 입자가 PLA 매트릭스 내에 함침되어 있는 것을 확인하였다. 또한 시차주사열량계 측정에서 ODCNF가 PLA에 적용되었을 때 결정화도 상승과 냉 결정화 온도가 앞당겨지는 것을 확인하였다. 그리고 냉각 과정에서 결정이 생성되는 것을 통해 실제 생산 공정에 적용할 경우, 친환경 핵제로써 역할을 수행할 수 있을 것으로 판단하였다. 추가적으로 유변물성 측정기를 통해 첨가된 ODCNF가 PLA의 점도를 과도하게 증가시키지 않아 기존 공정 조건에 그대로 적용할 수 있음을 확인하였고, 이는 제작된 시편을 통해서도 알 수 있었다. 동적 점탄성 특성에서는 첨가된 ODCNF 입자의 필러 효과와 향상된 결정화도로 인해 유리상과 고무상에서 모두 저장 탄성율의 비율이 PLA에 비해 높게 유지되는 것으로 밝혀졌다. 이러한 연구결과를 바탕으로 대량 생산이 가능하고, 생산단가를 낮춘 ODCNF를 이용하여 CNF/PLA 기반의 100% 생분해성 복합재 개발이 가능할 것으로 기대된다.

Because of the global pollution caused by plastic disposal, demand for eco-friendly transformation in the packaging industry is increased. As part of that, the utilization of polylactic acid (PLA) as a food packaging material is increased. However, it is necessary to improve the crystallinity of PLA by adding nucleating agents or to improve the modulus by adding fillers because of the excessive brittleness of the PLA matrix. Thus, the cellulose nanofiber (CNF) was fabricated and dried to obtain a powder form and applied to the CNF/PLA nanocomposite. The effect of CNF on the morphological, thermal, rheological, and dynamic mechanical properties of the composite was analyzed. We can confirm the impregnated CNF particle in the PLA matrix through the field emission scanning electron microscope (FE-SEM). Differential scanning calorimetry (DSC) analysis showed that the crystallinity of not annealed CNF/PLA nanocomposite was increased approximately 2 and 4 times in the 1st and 2nd cycle, respectively, with the shift to lower temperature of cold crystallization temperature (Tcc) in the 2nd cycle. Moreover, the crystallinity of annealed CNF/PLA nanocomposite increased by 13.4%, and shifted Tcc was confirmed.

키워드

과제정보

이 연구는 2022년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(RS-2022-00156142). 이 논문은 한국연구재단 우수신진연구사업의 지원을 받아 수행된 연구임(2020R1C1C1012581).

참고문헌

  1. Verma, R., Vinoda, K., Papireddy, M. and Gowda, A. 2016. Toxic pollutants from plastic waste-a review. Procedia Environmental Sciences, 35: 701-708.
  2. Yang, K. K., Wang, X.L. and Wang, Y.-Z., 2007, Progress in nanocomposite of biodegradable polymer. Journal of Industrial and Engineering Chemistry, 13(4): 485-500.
  3. Guo, X., Yao, Y., Zhao, H., Chi, C., Zeng, F., Qian, F., Liu, Z., Huo, L. and Lv, Y. 2021. Environmental impacts of functional fillers in polylactide (PLA)-based bottles using life cycle assessment methodology. Science of The Total Environment, 788: 147852.
  4. Cheng, S., Lau, K.-t., Liu, T., Zhao, Y., Lam, P.-M. and Yin, Y. 2009. Mechanical and thermal properties of chicken feather fiber/PLA green composites. Composites Part B: Engineering, 40(7): 650-654. https://doi.org/10.1016/j.compositesb.2009.04.011
  5. Maliekkal, V., Maduskar, S., Saxon, D. J., Nasiri, M., Reineke, T. M., Neurock, M. and Dauenhauer, P. 2018. Activation of cellulose via cooperative hydroxyl-catalyzed transglycosylation of glycosidic bonds. ACS Catalysis, 9(3): 1943-1955.
  6. Sharma, A., Thakur, M., Bhattacharya, M., Mandal, T. and Goswami, S. 2019. Commercial application of cellulose nanocomposites-A review. Biotechnology Reports, 21: e00316.
  7. Lavoine, N., Desloges, I., Dufresne, A. and Bras, J. 2012. Microfibrillated cellulose-Its barrier properties and applications in cellulosic materials: A review. Carbohydrate polymers, 90 (2): 735-764. https://doi.org/10.1016/j.carbpol.2012.05.026
  8. Kim, C. H., Youn, H. J. and Lee, H. L. 2015. Preparation of cross-linked cellulose nanofibril aerogel with water absorbency and shape recovery. Cellulose, 22: 3715-3724. https://doi.org/10.1007/s10570-015-0745-5
  9. Ju, S., Lee, A., Shin, Y., Jang, H., Yi, J.-W., Oh, Y., Jo, N.-J. and Park, T., 2023. Preventing the Collapse Behavior of Polyurethane Foams with the Addition of Cellulose Nanofiber. Polymers, 15(6): 1499.
  10. Keshtkar, M., Nofar, M., Park, C. B. and Carreau, P. 2014. Extruded PLA/clay nanocomposite foams blown with supercritical CO2. Polymer, 55(16): 4077-4090. https://doi.org/10.1016/j.polymer.2014.06.059
  11. Mathew, A. P., Oksman, K. and Sain, M. 2005. Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of applied polymer science, 97(5), 2014-2025. https://doi.org/10.1002/app.21779
  12. Huang, R., Zhu, X., Tu, H. and Wan, A. 2014. The crystallization behavior of porous poly (lactic acid) prepared by modified solvent casting/particulate leaching technique for potential use of tissue engineering scaffold. Materials letters, 136: 126-129. https://doi.org/10.1016/j.matlet.2014.08.044
  13. Jonoobi, M., Harun, J., Mathew, A. P. and Oksman, K. 2010. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Composites Science and Technology, 70(12): 1742-1747. https://doi.org/10.1016/j.compscitech.2010.07.005
  14. Mathew, A. P., Chakraborty, A., Oksman, K. and Sain, M. 2006. The structure and mechanical properties of cellulose nanocomposites prepared by twin screw extrusion. ACS Publications.
  15. Sumigin, D., Tarasova, E., Krumme, A. and Viikna, A. 2012. Influence of cellulose content on thermal properties of poly (lactic) acid/cellulose and low-density polyethylene/cellulose composites. Proceedings of the Estonian Academy of Sciences, 61(3): 237-244. https://doi.org/10.3176/proc.2012.3.14
  16. Dai, J. X., Yang, Q., and Liu, B. J. 2013. In Crystallization behavior of PLA/PEG/nucleating agent blends, Advanced Materials Research, Trans Tech Publ. pp 578-581.
  17. Lee, J. H., Park, S. H. and Kim, S. H., Preparation of cellulose nanowhiskers and their reinforcing effect in polylactide. Macromolecular Research, 21: 1218-1225.
  18. Manshor, M., Anuar, H., Aimi, M. N., Fitrie, M. A., Nazri, W. W., Sapuan, S., El-Shekeil, Y. and Wahit, M. 2014. Mechanical, thermal and morphological properties of durian skin fibre reinforced PLA biocomposites. Materials & Design, 59: 279-286. https://doi.org/10.1016/j.matdes.2014.02.062
  19. Ding, W., Kuboki, T., Wong, A., Park, C. B. and Sain, M. 2015. Rheology, thermal properties, and foaming behavior of high d-content polylactic acid/cellulose nanofiber composites. RSC advances, 5(111): 91544-91557. https://doi.org/10.1039/C5RA16901A
  20. Du, L., Zhong, T., Wolcott, M. P., Zhang, Y., Qi, C., Zhao, B., Wang, J. and Yu, Z. 2018. Dispersing and stabilizing cellulose nanoparticles in acrylic resin dispersions with unreduced transparency and changed rheological property. Cellulose, 25: 2435-2450. https://doi.org/10.1007/s10570-018-1739-x