Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C1009781). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1C1C1005409).
References
- Afrifa-Yamoah, E., Mueller, U.A., Taylor, S.M. and Fisher, A.J. (2022), "Missing data imputation of high-resolution temporal climate time series data", Meteorol. Appl., 27(1), 1873. https://doi.org/10.1002/met.1873.
- Alkesaiberi, A. Harrou, F. and Sun, Y. (2022), "Efficient wind power prediction using machine learning methods: a comparative study", Energies, 15, 2327. https://doi.org/10.3390/en15072327.
- Kim, B., Tse, K.T., Yoshida, A., Chen, Z., Van Phuc, P. and Park, H.S. (2019), "Investigation of flow visualization around linked tall buildings with circular sections", Build. Environ., 153, 60-76. https://doi.org/10.1016/j.buildenv.2019.02.021.
- Kim, B., Tse, K.T., Yoshida, A., Tamura, Y., Chen, Z., Van Phuc, P. and Park, H.S. (2019), "Statistical analysis of wind-induced pressure fields and PIV measurements on two buildings", J. Wind Eng. Ind. Aerod., 188, 161-174, https://doi.org/10.1016/j.jweia.2019.01.016.
- Kim, B., Tse, K.T., Chen, Z. and Park, H.S. (2020), "Multi-objective optimization of a structural link for a linked tall building system", J. Build. Eng., 31, 101382. https://doi.org/10.1016/j.jobe.2020.101382.
- Bubryur Kim, N. Yuvaraj, K.T. Tse, Dong-Eun Lee, Gang Hu (2021), "Pressure pattern recognition in buildings using an unsupervised machine-learning algorithm", J. Wind Eng. Ind. Aerodyn., 214, 104629, https://doi.org/10.1016/j.jweia.2021.104629.
- Dong, M., Wu, H., Hu, H., Azzam, R., Zhang, L., Zheng, Z. and Gong, X. (2020), "Deformation prediction of unstable slopes based on real-time monitoring and deepar model", Sensors, 21, 14. https://doi.org/10.3390/s21010014.
- Bre, F., Gimenez, J.M. and Fachinotti, V.D. (2018), "Prediction of wind pressure coefficients on building surfaces using artificial neural networks", Energy Build., 158, 1429-1441. https://doi.org/10.1016/j.enbuild.2017.11.045.
- Fan, H. Zhang, X. Mei, S. Chen, K. and Chen, X. (2020), "M2GSNet: multi-modal multi-task graph spatiotemporal network for ultra-short-term wind farm cluster power prediction", Appl. Sci., 10, 7915. https://doi.org/10.3390/app10217915.
- Fan, H., Zhang, X. and Mei, S. (2021), "Wind power time series missing data imputation based on generative adversarial network", IEEE 4th International Electrical and Energy Conference, 1-6. https://doi.org/10.1109/CIEEC50170.2021.9510923.
- Hu, G., Liu, L., Tao, D., Song, J., Tse, K.T. and Kwok, K.C. (2020), "Deep learning- based investigation of wind pressures on tall building under interference effects", J. Wind Eng. Ind. Aerod., 201, 104138, https://doi.org/10.1016/j.jweia.2020.104138.
- Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S. and Bengio, Y. (2020), "Generative adversarial networks", Communications of the ACM, 63(11), 139-144. https://doi.org/10.48550/arXiv.1406.2661.
- Huang, F., Zhang, J. and Zhou, C. (2020), "A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction", Landslides, 17, 217-229. https://doi.org/10.1007/s10346-019-01274-9.
- Kim, B., Yuvaraj, N., Sri Preethaa, K.R., Hu, G. and Lee, D.E. (2021), "Wind-Induced pressure prediction on tall buildings using generative adversarial imputation network", Sensors, 21, 2515. https://doi.org/10.3390/s21072515.
- Lee, S.J. and Yoon, H.K. (2021), "Discontinuity predictions of porosity and hydraulic conductivity based on electrical resistivity in slopes through deep learning algorithms", Sensors, 21, 1412. https://doi.org/10.3390/s21041412.
- Mir, A.A., Kearfott, K.J., Celebi, F.V. and Rafique, M. (2022), "Imputation by feature importance (IBFI): A methodology to envelop machine learning method for imputing missing patterns in time series data", PLoS ONE, 17(1), e0262131. https://doi.org/10.1371/journal.pone.0262131.
- Tse, K.T., Hitchcock, P.A. and Kwok, K.C.S. (2009), "Mode shape linearization for HFBB analysis of wind-excited complex tall buildings", Eng. Struct., 31(3), 675-685, https://doi.org/10.1016/j.engstruct.2008.11.012.
- Niu, Y., Fritzen, C.P., Jung, H., Buethe, I., Ni, Y.Q. and Wang, Y.W. (2015), "Online simultaneous reconstruction of wind load and structural responses-theory and application to canton tower", Comput. Aid. Civil Infrastr. Eng., 30(8), 666-681, https://doi.org/10.1111/mice.12134.
- Oh, B.K., Glisic, B., Kim, Y. and Park, H.S. (2019), "Convolutional neural network-based wind-induced response estimation model for tall buildings", Computer-Aided Civil and Infrastr. Eng., 34(10), 843-858. https://doi.org/10.1111/mice.12476.
- Salinas, D., Flunkert, V., Gasthaus, J. and Januschowski, T. (2020), "DeepAR: probabilistic forecasting with autoregressive recurrent networks", Int. J. Forecast., 36, 1181-1191. https://doi.org/10.1016/j.ijforecast.2019.07.001.
- Thakker, D., Mishra, B.K., Abdullatif, A., Mazumdar, S. and Simpson, S. (2020), "Explainable artificial intelligence for developing smart cities solutions", Smart Cities, 3, 1353-1382. https://doi.org/10.3390/smartcities3040065.
- Thrun, M.C., Ultsch, A. and Breuer, L. (2021), "Explainable AI framework for multivariate hydro chemical time series", Mach. Learn. Knowl. Extr., 3, 170-204. https://doi.org/10.3390/make3010009.
- Thrun, M.C. and Ultsch, A. (2021), "Using projection-based clustering to find distance- and density-based clusters in high-dimensional data", J. Classification, 38, 280-312. https://doi.org/10.1007/s00357-020-09373-2.
- Park, H., Yuvaraj, N. and Kim, B. (2019), "Statistical analysis of aerodynamic characteristics on buildings", J. Korean Assoc. Spatial Struct., 19(4), 14-18, https://doi.org/10.1007/s00357-020-09373-2.
- Wesonga, R. (2015), "On multivariate imputation and forecasting of decadal wind speed missing data", SpringerPlus, 4, 12. https://doi.org/10.1186/s40064-014-0774-9.