DOI QR코드

DOI QR Code

Safety in Mass Gathering: Basic Survey for Crowd Crush

군중집회 시의 안전: 군중압박의 기초 조사

  • Received : 2022.12.22
  • Accepted : 2023.03.23
  • Published : 2023.03.31

Abstract

After the 10.29 Itaewon disaster, interests in the crowd crush injury increased, but it is pointed out that the academic and practical basis related to crowd crush is still weak in Korea. Therefore, in this study, terms and concepts related to crowd crush were investigated and proposed, and representative cases of crowd crush events were investigated and summarized. Approaches based on representative cases were investigated, and among them, video analysis, simulation, questionnaire survey and interview methods were derived as an essential approach methods. Through this research, it is expected that standardization of Korean terminology, concept establishment, evaluation, and systematization of approach methods of crowd crush can be accomplished.

2022년 10월 29일 발생한 이태원 참사 이후 군중압박 사고로 인한 인명피해에 대한 관심이 높아졌으나 국내에서 군중압박과 관련된 학술적, 실제적 기반이 미약함이 지적되었다. 이에 본 연구에서는 군중압박과 관련된 용어와 개념을 조사하고 가능한 한글 용어 후보들을 제안하였으며, 국내외에서 발생한 대표적인 군중압박 사고 사례를 조사하여 정리하였다. 일부 대표적 사례를 기반으로 한 선진국의 접근법들을 조사하였고, 그 중 대표적으로 영상분석, 시뮬레이션 및 설문과 인터뷰 방법을 요약 도출하였다. 이를 통하여 군중압박 사고의 한글 용어 표준화와 개념 정립, 평가 및 접근 방법의 체계화가 이루어지기를 기대하고 있다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2023R1A2C1002938).

References

  1. Akopov, A. and L. Beklaryan. (2011). Model of Adaptive Control of Complex Organizational Structures. International Journal of Pure and Applied Mathematics. 71(1): 105-127.
  2. Ding, A. W. (2011). Implementing Real-Time Grouping for Fast Egress in Emergency. Safety Science. 49(10): 1404-1411. https://doi.org/10.1016/j.ssci.2011.06.006
  3. Fridman, N. and G. Kaminka. (2010). Modeling Pedestrian Crowd Behavior Based on a Cognitive Model of Social Comparison Theory. Computational and Mathematical Organization Theory. 16(4): 348-372. https://doi.org/10.1007/s10588-010-9082-2
  4. Helbing, D., P. Molnar, I. Farkas, and K. Bolay. (2001). Self-Organizing Pedestrian Movement. Environment and Planning B: Planning and Design. 28: 361-383. https://doi.org/10.1068/b2697
  5. Heliovaara, S., T. Korhonen, S. Hostikka, and H. Ehtamo. (2012). Counterflow Model for Agent-Based Simulation of Crowd Dynamics. Building and Environment. 48(1): 89-100. https://doi.org/10.1016/j.buildenv.2011.08.020
  6. Johansson, A., D. Helbing, H. Z. Al-Abideen, and S. Al-Bosta. (2008). From Crowd Dynamics to Crowd Safety: A Video-Based Analysis. Advances in Complex Systems. 11(4): 497-527. https://doi.org/10.1142/S0219525908001854
  7. Karimaghalou, N., U. Bernardet, and S. Di Paola. (2014). A Model for Social Spatial Behavior in Virtual Characters. Computer Animation and Virtual Worlds. 25(3/4): 505-517. https://doi.org/10.1002/cav.1600
  8. Kim, S. and J. Park. (2020). Analysis on the Escape Tendency of Rodents to Escape due to Electrical Stimulation for the Interpretation of Pedestrian Crush Accidents. Proceedings of the 2020 KSMPE Conference. 154.
  9. Lee, K. (2007). Clinical Analysis of the Stadium Stampede in Sang-ju, Korea. Journal of the Korean Society of Emergency Medicine. 18(5): 367-374.
  10. Lee, S. and T. Jung. (2007). The Study on the Prevention against Accidents of Death form Pressure Events Performance Site. Journal of korea Sport Research. 18(5): 429-444.
  11. Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision. 60(2): 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  12. Michael, J. A. and J. A. Barbera. (1997). Mass Gatherings Medical Care: A Twenty-Five Year Review. Journal of Prehospital and Disaster Medicine. 12(4): 305-312.
  13. Park, J. H., F. A. Rojas, and H. S. Yang. (2013). A Collision Avoidance Behavior Model for Crowd Simulation Based on Psychological Findings. Computer Animation and Virtual World. 24(3/4): 173-183. https://doi.org/10.1002/cav.1504
  14. Qin, W.-H., G.-H. Su, and X.-N. Li. (2009). Technology for Simulating Crowd Evacuation Behaviors. International Journal of Automation and Computing. 6(3): 351-355. https://doi.org/10.1007/s11633-009-0351-9
  15. Rao, Y., L. Chen, Q. Liu, W. Lin, Y. Li, and J. Zhou. (2011). Real-Time Control of Individual Agents for Crowd Simulation. Multimedia Tools and Applications. 54(2): 397-414. https://doi.org/10.1007/s11042-010-0542-y
  16. Sakuma, T., T. Mukai, and S. Kuriyama. (2005). Psychological Model for Animating Crowded Pedestrians. Computer Animation and Virtual Worlds. 16(3/4): 343-351. https://doi.org/10.1002/cav.105
  17. Siddiqui, A. A. and S. M. Gwynne. (2012). Employing Pedestrian Observations in Engineering Analysis. Safety Science. 50(3): 478-493. https://doi.org/10.1016/j.ssci.2011.10.011
  18. Song, K. and J. Park. (2011). Analysis for Jamming Accident on Emergency Escape through the Bottleneck under High Density Condition. Proceedings of the 2011 KIFSE Annual Fall Conference. 490-493.
  19. Wang, S. and H. Byun. (2011). A Survey of Human Injury and Crowd Packing in Mass Gathering. Journal of the Korean Society for information. 7(1): 12-20.