Acknowledgement
This research is supported by the faculty research seed grant from the College of Engineering and Computing at Georgia Southern University.
References
- AASHTO (2013), "AASHTO T 89-13 standard method of test for determining the liquid limit of soils", American Association of State and Highway Transportation Officials.
- Alrubaye Ali, J., Hasan, M. and Fattah Mohammed, Y. (2018), "Effects of using silica fume and lime in the treatment of kaolin soft clay", Geomech. Eng. 14(3), 247-255. https://doi.org/10.12989/gae.2018.14.3.247.
- ASTM (2000), "ASTM D2487-00 standard practice for classification of soils for engineering purposes (Unified soil classification system)", ASTM International. https://doi.org/10.1520/D2487-00.
- ASTM (2005), "ASTM D4318 standard test method for liquid limit, plastic limit, and plasticity index of soils", ASTM Int., https://doi.org/10.1520/D4318-05.
- ASTM (2010), "ASTM D854-10 standard test methods for specific gravity of soil solids by water pycnometer", ASTM Int., https://doi.org/10.1520/D0854-10.
- ASTM (2017), "ASTM D1140-17 standard test methods for determining the amount of material finer than 75-㎛ (No. 200) sieve in soils by washing", ASTM Int., https://doi.org/10.1520/D1140-17.
- Atterberg, A. (1911), "Die plastizitat der Tone", Intern mitt. boden., 4-37.
- Bore, T., Mishra, P.N., Wagner, N., Schwing, M., Honorio, T., Revil, A. and Scheuermann, A. (2021), "Coupled hydraulic, mechanical and dielectric investigations on kaolin", Eng. Geol., 294, 106352. https://doi.org/10.1016/j.enggeo.2021.106352.
- British Standards Institute (2022), "Bs 1377-2:2022 methods of test for soils for civil engineering purposes - Part 2: classification tests and determination of geotechnical properties".
- Cakar, E. and Yukselen-Aksoy, Y. (2021), "Ageing effect on compressibility, permeability and shear strength of clayey soils exposed to salt solutions", Geomech. Eng., 25(3), 245-251. https://doi.org/10.12989/gae.2021.25.3.245.
- Casagrande, A. (1932). "Research on the Atterberg limits of soils." Public Roads, 13(8), 121-130, 136.
- Casagrande, A. (1958), "Notes on the design of the liquid limit device", Geotechnique, 8(2), 84-91. https://doi.org/10.1680/geot.1958.8.2.84.
- Chen, J.G., Wadhwa, N., Cha, Y.J., Durand, F., Freeman, W.T. and Buyukozturk, O. (2015), "Modal identification of simple structures with high-speed video using motion magnification", J. Sound Vib., 345, 58-71. https://doi.org/10.1016/j.jsv.2015.01.024.
- Coduto, D., Yeung, M.C. and Kitch, W. (2011), Geotechnical Engineering: Principles and Practices.
- Di Matteo, L. (2012). "Liquid limit of low- to medium-plasticity soils: Comparison between casagrande cup and cone penetrometer test", Bull. Eng. Geol. Environ., 71(1), 79-85. https://doi.org/10.1007/s10064-011-0412-5.
- ISO (2022), "ISO 17892-12:2018/Amd 2:2022 geotechnical investigation and testing - laboratory testing of soil - Part 12: Determination of liquid and plastic limits - amendment 2".
- Kim, J., Sapp, L. and Sands, M. (2022), "Simultaneous and contactless characterization of the Young's and shear moduli of gelatin-based hydrogels", Exp. Mech., 62. https://doi.org/10.1007/s11340-022-00891-1.
- Knadel, M., Ur Rehman, H., Pouladi, N., Wollesen de Jonge, L., Moldrup, P. and Arthur, E. (2021), "Estimating atterberg limits of soils from reflectance spectroscopy and pedotransfer functions", Geoderma, 402, 115300. https://doi.org/10.1016/j.geoderma.2021.115300.
- Lee, J. and Shang, J. (2011), "Influencing factors on electrical conductivity of compacted kaolin clay", Geomech. Eng., 3(2), 131-151. https://doi.org/10.12989/gae.2011.3.2.131.
- Lu, N. (2019), "Linking soil water adsorption to geotechnical engineering properties", Geotechnical Fundamentals for Addressing New World Challenges.
- Marcu, A.E., Dobre, R.A., Datcu, O., Suciu, G. and Oh, J. (2019), "Flicker free VLC system with automatic code resynchronization using low frame rate camera", Proceedings of the 2019 42nd International Conference on Telecommunications and Signal Processing (TSP.
- Marcu, A.E., Dobre, R.A. and Vladescu, M. (2018), "Flicker free visible light communication using low frame rate camera", Proceedings of the 2018 International Symposium on Fundamentals of Electrical Engineering (ISFEE).
- Marcu, A.E., Dobre, R.A. and Vladescu, M. (2020), "Flicker free optical camera communication for cameras capturing 30 frames per second", Proceedings of the 2020 43rd International Conference on Telecommunications and Signal Processing (TSP
- Polidori, E. (2007), "Relationship between the atterberg limits and clay content", Soils Found., 47(5), 887-896. https://doi.org/10.3208/sandf.47.887.
- Rehman, H. U., Knadel, M., Kayabali, K. and Arthur, E. (2019), "Estimating atterberg limits of fine-grained soils by visible- near-infrared spectroscopy", Vadose Zone J., 18(1), 190039. https://doi.org/10.2136/vzj2019.04.0039.
- Sands, M. and Kim, J. (2023), " A low-cost and open-source measurement system to determine the Young's and shear moduli and poisson's ratio of soft materials using a raspberry Pi camera module and 3D printed parts", HardwareX, 13, e00386. https://doi.org/10.1016/j.ohx.2022.e00386.
- Shimobe, S. and Spagnoli, G. (2019), "A global database considering atterberg limits with the casagrande and fall-cone tests", Eng. Geol., 260, 105201. https://doi.org/10.1016/j.enggeo.2019.105201.
- Simoncelli, E.P. and Freeman, W.T. (1995), "The steerable pyramid: A flexible architecture for multi-scale derivative computation", Proceedings of the International Conference on Image Processing.
- Wadhwa, N., Rubinstein, M., Durand, F. and Freeman, W. (2013), "Phase-based video motion processing", Association for Computing Machinery (ACM) Transactions on Graphics (TOG), 32. https://doi.org/10.1145/2461912.2461966.
- Yasodian, S., Dutta, R.K. and Seena, L. (2012), "Effect of microorganism on engineering properties of cohesive soils", Geomech. Eng., 4(2), 135-150. https://doi.org/10.12989/gae.2012.4.2.135.