Acknowledgement
This study was supported by the Guangdong Province Key Area R&D Program (2022B0202090002), the Natural Science Foundation of Guangdong Province (2018B030313011), and the Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program (2019BT02N630). The funding agencies had no role in the study design, data collection and analysis, publication decision, or manuscript preparation.
References
- Wang K, Liu D, Hernandez-Sanchez J, et al. Genome wide association analysis reveals new production trait genes in a male Duroc population. Plos One 2015;10:e139207. https://doi.org/10.1371/journal.pone.0139207
- Medeiros DOSR, Bonvino SN, de Oliveira FB, et al. Genomewide association study for carcass traits in an experimental nelore cattle population. Plos One 2017;12:e169860. https://doi.org/10.1371/journal.pone.0169860
- Friesen KG, Nelssen JL, Goodband RD, et al. The effect of dietary lysine on growth, carcass composition, and lipid metabolism in high-lean growth gilts fed from 72 to 136 kilograms. J Anim Sci 1995;73:3392-401. https://doi.org/10.2527/1995.73113392x
- Mclaren DG, Mckeith FM, Novakofski J. Prediction of carcass characteristics at market weight from serial real-time ultrasound measures of backfat and loin eye area in the growing pig. J Anim Sci 1989;67:1657-67. https://doi.org/10.2527/jas1989.6771657x
- Godinho RM, Bergsma R, Silva FF, et al. Genetic correlations between feed efficiency traits, and growth performance and carcass traits in purebred and crossbred pigs. J Anim Sci 2018;96:817-29. https://doi.org/10.1093/jas/skx011
- Kuhlers DL, Nadarajah K, Jungst SB, Anderson BL. Genetic selection for real-time ultrasound loin eye area in a closed line of Landrace pigs. Livest Prod Sci 2001;72:225-31. https://doi.org/10.1016/S0301-6226(01)00222-6
- Suzuki K, Kadowaki H, Shibata T, Uchida H, Nishida A. Selection for daily gain, loin-eye area, backfat thickness and intramuscular fat based on desired gains over seven generations of Duroc pigs. Livest Prod Sci 2005;97:193-202. https://doi.org/10.1016/j.livprodsci.2005.04.007
- Onteru SK, Gorbach DM, Young JM, Garrick DJ, Dekkers JCM, Rothschild MF. Whole genome association studies of residual feed intake and related traits in the pig. Plos One 2013;8:e61756. https://doi.org/10.1371/journal.pone.0061756
- Thomsen H, Lee HK, Rothschild MF, Malek M, Dekkers JCM. Characterization of quantitative trait loci for growth and meat quality in a cross between commercial breeds of swine. J Anim Sci 2004;82:2213-28. https://doi.org/10.2527/2004.8282213x
- Hu ZL, Park CA, Reecy JM. Bringing the animal QTLdb and CorrDB into the future: meeting new challenges and providing updated services. Nucleic Acids Res 2022;50:D956-61. https://doi.org/10.1093/nar/gkab1116
- Pearson TA, Manolio TA. How to interpret a genome-wide association study. J Am Med Assoc 2008;299:1335-44. https://doi.org/10.1001/jama.299.11.1335
- Andersson L. Genome-wide association analysis in domestic animals: a powerful approach for genetic dissection of trait loci. Genetica 2009;136:341-9. https://doi.org/10.1007/s10709-008-9312-4
- Ramos AM, Crooijmans RP, Affara NA, et al. Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. Plos One 2009;4:e6524. https://doi.org/10.1371/journal.pone.0006524
- Fernandez AI, Perez-Montarelo D, Barragan C, et al. Genomewide linkage analysis of QTL for growth and body composition employing the PorcineSNP60 BeadChip. BMC Genet 2012;13:41. https://doi.org/10.1186/1471-2156-13-41
- Fontanesi L, Schiavo G, Galimberti G, et al. A genome wide association study for backfat thickness in Italian Large White pigs highlights new regions affecting fat deposition including neuronal genes. BMC Genomics 2012;13:583. https://doi.org/10.1186/1471-2164-13-583
- Sahana G, Kadlecova V, Hornshoj H, Nielsen B, Christensen OF. A genome-wide association scan in pig identifies novel regions associated with feed efficiency trait. J Anim Sci 2013;91:1041-50. https://doi.org/10.2527/jas.2012-5643
- He Y, Ma J, Zhang F, et al. Multi-breed genome-wide association study reveals heterogeneous loci associated with loin eye area in pigs. J Appl Genet 2016;57:511-8. https://doi.org/10.1007/s13353-016-0351-8
- Ding R, Zhuang Z, Qiu Y, et al. A composite strategy of genomewide association study and copy number variation analysis for carcass traits in a Duroc pig population. BMC Genomics 2022;23:590. https://doi.org/10.1186/s12864-022-08804-1
- Fan B, Onteru SK, Du ZQ, Garrick DJ, Stalder KJ, Rothschild MF. Genome-wide association study identifies Loci for body composition and structural soundness traits in pigs. Plos One 2011;6:e14726. https://doi.org/10.1371/journal.pone.0014726
- Zhuang Z, Li S, Ding R, et al. Meta-analysis of genome-wide association studies for loin muscle area and loin muscle depth in two Duroc pig populations. Plos One 2019;14: e218263. https://doi.org/10.1371/journal.pone.0218263
- Ding R, Yang M, Wang X, et al. Genetic architecture of feeding behavior and feed efficiency in a Duroc pig population. Front Genet 2018;9:220. https://doi.org/10.3389/fgene.2018.00220
- Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81:559-75. https://doi.org/10.1086/519795
- Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat Genet 2012;44:821-4. https://doi.org/10.1038/ng.2310
- Matukumalli LK, Lawley CT, Schnabel RD, et al. Development and characterization of a high density SNP genotyping assay for cattle. Plos One 2009;4:e5350. https://doi.org/10.1371/journal.pone.0005350
- Li S, Qian J, Yang Y, et al. GWAS identifies novel susceptibility loci on 6p21.32 and 21q21.3 for hepatocellular carcinoma in chronic hepatitis B virus carriers. Plos Genet 2012;8: e1002791. https://doi.org/10.1371/journal.pgen.1002791
- Lee JN, Wang Y, Xu YO, Li YC, Tian F, Jiang MF. Characterisation of gene expression related to milk fat synthesis in the mammary tissue of lactating yaks. J Dairy Res 2017;84:283-8. https://doi.org/10.1017/S0022029917000413
- Ito K, Murphy D. Application of ggplot2 to pharmacometric graphics. CPT Pharmacometrics Syst Pharmacol 2013;2:e79. https://doi.org/10.1038/psp.2013.56
- Wang Y, Ding X, Tan Z, et al. Genome-wide association study of piglet uniformity and farrowing interval. Front Genet 2017;8:194. https://doi.org/10.3389/fgene.2017.00194
- Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 2011;88:76-82. https://doi.org/10.1016/j.ajhg.2010.11.011
- Bu D, Luo H, Huo P, et al. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res 2021;49:W317-25. https://doi.org/10.1093/nar/gkab447
- Fonseca PAS, Suarez-Vega A, Marras G, Canovas A. GALLO: An R package for genomic annotation and integration of multiple data sources in livestock for positional candidate loci. Gigascience 2020;9:giaa149. https://doi.org/10.1093/gigascience/giaa149
- Xing K, Zhu F, Zhai L, et al. Identification of genes for controlling swine adipose deposition by integrating transcriptome, whole-genome resequencing, and quantitative trait loci data. Sci Rep 2016;6:23219. https://doi.org/10.1038/srep23219
- Li J, Peng S, Zhong L, et al. Identification and validation of a regulatory mutation upstream of the BMP2 gene associated with carcass length in pigs. Genet Sel Evol 2021;53:94. https://doi.org/10.1186/s12711-021-00689-0
- Sarup P, Jensen J, Ostersen T, Henryon M, Sorensen P. Increased prediction accuracy using a genomic feature model including prior information on quantitative trait locus regions in purebred Danish Duroc pigs. BMC Genet 2016;17:11. https://doi.org/10.1186/s12863-015-0322-9
- Zhang X, Lourenco D, Aguilar I, Legarra A, Misztal I. Weighting strategies for single-step genomic BLUP: an iterative approach for accurate calculation of GEBV and GWAS. Front Genet 2016;7:151. https://doi.org/10.3389/fgene.2016.00151
- Zhang H, Zhuang Z, Yang M, et al. Genome-wide detection of genetic loci and candidate genes for body conformation traits in Duroc x Landrace x Yorkshire crossbred pigs. Front Genet 2021;12:664343. https://doi.org/10.3389/fgene.2021.664343
- Combes S, Louveau I, Bonneau M. Moderate food restriction affects skeletal muscle and liver growth hormone receptors differently in pigs. J Nutr 1997;127:1944-9. https://doi.org/10.1093/jn/127.10.1944
- Dettori ML, Pazzola M, Paschino P, Amills M, Vacca GM. Association between the GHR, GHRHR, and IGF1 gene polymorphisms and milk yield and quality traits in Sarda sheep. J Dairy Sci 2018;101:9978-86. https://doi.org/10.3168/jds.2018-14914
- Katsumata M, Cattaneo D, White P, Burton KA, Dauncey MJ. Growth hormone receptor gene expression in porcine skeletal and cardiac muscles is selectively regulated by postnatal undernutrition. J Nutr 2000;130:2482-8. https://doi.org/10.1093/jn/130.10.2482
- Fukao T, Lopaschuk GD, Mitchell GA. Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukot Essent Fatty Acids 2004;70:243-51. https://doi.org/10.1016/j.plefa.2003.11.001
- Li C, Sun D, Zhang S, et al. Genome wide association study identifies 20 novel promising genes associated with milk fatty acid traits in Chinese Holstein. Plos One 2014;9:e96186. https://doi.org/10.1371/journal.pone.0096186
- Badoud F, Lam KP, Dibattista A, et al. Serum and adipose tissue amino acid homeostasis in the metabolically healthy obese. J Proteome Res 2014;13:3455-66. https://doi.org/10.1021/pr500416v
- Kumar H, Srikanth K, Park W, et al. Transcriptome analysis to identify long non coding RNA (lncRNA) and characterize their functional role in back fat tissue of pig. Gene 2019;703:71-82. https://doi.org/10.1016/j.gene.2019.04.014
- Zhou Q, Chen W, Fan Z, et al. Targeting hyperactive TGFBR2 for treating MYOCD deficient lung cancer. Theranostics 2021;11:6592-606. https://doi.org/10.7150/thno.59816
- Xu J, Jiao J, Xu W, et al. Mutant p53 promotes cell spreading and migration via ARHGAP44. Sci China Life Sci 2017;60:1019-29. https://doi.org/10.1007/s11427-016-9040-8
- Schroeder C, Navid-Hill E, Meiners J, et al. Nuclear ELAC2 overexpression is associated with increased hazard for relapse after radical prostatectomy. Oncotarget 2019;10:4973-86. https://doi.org/10.18632/oncotarget.27132
- Liu S, Huang J, Zhang Y, Liu Y, Zuo S, Li R. MAP2K4 interacts with Vimentin to activate the PI3K/AKT pathway and promotes breast cancer pathogenesis. Aging (Albany NY) 2019;11:10697-710. https://doi.org/10.18632/aging.102485
- Qie S. The E3 ubiquitin ligase Fbxo4 functions as a tumor suppressor: its biological importance and therapeutic perspectives. Cancers (Basel) 2022;14:2133. https://doi.org/10.3390/cancers14092133
- Wang L, Zhou N, Qu J, Jiang M, Zhang X. Identification of an RNA binding protein-related gene signature in hepatocellular carcinoma patients. Mol Med 2020;26:125. https://doi.org/10.1186/s10020-020-00252-5
- Li G, Eriani G, Wang ED, Zhou XL. Distinct pathogenic mechanisms of various RARS1 mutations in Pelizaeus- Merzbacher-like disease. Sci China Life Sci 2021;64:1645-60. https://doi.org/10.1007/s11427-020-1838-2
- Xu R, Yallowitz A, Qin A, et al. Targeting skeletal endothelium to ameliorate bone loss. Nat Med 2018;24:823-33. https://doi.org/10.1038/s41591-018-0020-z
- Wang T, Wang F, Liu T, et al. OPG/RANKL/RANK gene methylation among alcohol-induced femoral head necrosis in northern Chinese men. J Orthop Surg Res 2021;16:223. https://doi.org/10.1186/s13018-021-02356-y
- Zhang S, Xie C. The role of OXCT1 in the pathogenesis of cancer as a rate-limiting enzyme of ketone body metabolism. Life Sci 2017;183:110-5. https://doi.org/10.1016/j.lfs.2017.07.003