DOI QR코드

DOI QR Code

Genome-wide association study for loin muscle area of commercial crossbred pigs

  • Menghao Luan (College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University) ;
  • Donglin Ruan (College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University) ;
  • Yibin Qiu (College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University) ;
  • Yong Ye (College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University) ;
  • Shenping Zhou (College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University) ;
  • Jifei Yang (College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University) ;
  • Ying Sun (College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University) ;
  • Fucai Ma (College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University) ;
  • Zhenfang Wu (College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University) ;
  • Jie Yang (College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University) ;
  • Ming Yang (College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering) ;
  • Enqin Zheng (College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University) ;
  • Gengyuan Cai (College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University) ;
  • Sixiu Huang (College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University)
  • Received : 2022.10.24
  • Accepted : 2022.12.24
  • Published : 2023.06.01

Abstract

Objective: Loin muscle area (LMA) is an important target trait of pig breeding. This study aimed to identify single nucleotide polymorphisms (SNPs) and genes associated with LMA in the Duroc×(Landrace×Yorkshire) crossbred pigs (DLY). Methods: A genome-wide association study was performed using the Illumina 50K chip to map the genetic marker and genes associated with LMA in 511 DLY pigs (255 boars and 256 sows). Results: After quality control, we detected 35,426 SNPs, including six SNPs significantly associated with LMA in pigs, with MARC0094338 and ASGA0072817 being the two key SNPs responsible for 1.77% and 2.48% of the phenotypic variance of LMA, respectively. Based on previous research, we determined two candidate genes (growth hormone receptor [GHR] and 3-oxoacid Co A-transferase 1 [OXCT1]) that are associated with fat deposition and muscle growth and found further additional genes (MYOCD, ARHGAP44, ELAC2, MAP2K4, FBXO4, FBLL1, RARS1, SLIT3, and RANK3) that are presumed to have an effect on LMA. Conclusion: This study contributes to the identification of the mutation that underlies quantitative trait loci associated with LMA and to future pig breeding programs based on marker-assisted selection. Further studies are needed to elucidate the role of the identified candidate genes in the physiological processes involved in LMA regulation.

Keywords

Acknowledgement

This study was supported by the Guangdong Province Key Area R&D Program (2022B0202090002), the Natural Science Foundation of Guangdong Province (2018B030313011), and the Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program (2019BT02N630). The funding agencies had no role in the study design, data collection and analysis, publication decision, or manuscript preparation.

References

  1. Wang K, Liu D, Hernandez-Sanchez J, et al. Genome wide association analysis reveals new production trait genes in a male Duroc population. Plos One 2015;10:e139207. https://doi.org/10.1371/journal.pone.0139207
  2. Medeiros DOSR, Bonvino SN, de Oliveira FB, et al. Genomewide association study for carcass traits in an experimental nelore cattle population. Plos One 2017;12:e169860. https://doi.org/10.1371/journal.pone.0169860
  3. Friesen KG, Nelssen JL, Goodband RD, et al. The effect of dietary lysine on growth, carcass composition, and lipid metabolism in high-lean growth gilts fed from 72 to 136 kilograms. J Anim Sci 1995;73:3392-401. https://doi.org/10.2527/1995.73113392x
  4. Mclaren DG, Mckeith FM, Novakofski J. Prediction of carcass characteristics at market weight from serial real-time ultrasound measures of backfat and loin eye area in the growing pig. J Anim Sci 1989;67:1657-67. https://doi.org/10.2527/jas1989.6771657x
  5. Godinho RM, Bergsma R, Silva FF, et al. Genetic correlations between feed efficiency traits, and growth performance and carcass traits in purebred and crossbred pigs. J Anim Sci 2018;96:817-29. https://doi.org/10.1093/jas/skx011
  6. Kuhlers DL, Nadarajah K, Jungst SB, Anderson BL. Genetic selection for real-time ultrasound loin eye area in a closed line of Landrace pigs. Livest Prod Sci 2001;72:225-31. https://doi.org/10.1016/S0301-6226(01)00222-6
  7. Suzuki K, Kadowaki H, Shibata T, Uchida H, Nishida A. Selection for daily gain, loin-eye area, backfat thickness and intramuscular fat based on desired gains over seven generations of Duroc pigs. Livest Prod Sci 2005;97:193-202. https://doi.org/10.1016/j.livprodsci.2005.04.007
  8. Onteru SK, Gorbach DM, Young JM, Garrick DJ, Dekkers JCM, Rothschild MF. Whole genome association studies of residual feed intake and related traits in the pig. Plos One 2013;8:e61756. https://doi.org/10.1371/journal.pone.0061756
  9. Thomsen H, Lee HK, Rothschild MF, Malek M, Dekkers JCM. Characterization of quantitative trait loci for growth and meat quality in a cross between commercial breeds of swine. J Anim Sci 2004;82:2213-28. https://doi.org/10.2527/2004.8282213x
  10. Hu ZL, Park CA, Reecy JM. Bringing the animal QTLdb and CorrDB into the future: meeting new challenges and providing updated services. Nucleic Acids Res 2022;50:D956-61. https://doi.org/10.1093/nar/gkab1116
  11. Pearson TA, Manolio TA. How to interpret a genome-wide association study. J Am Med Assoc 2008;299:1335-44. https://doi.org/10.1001/jama.299.11.1335
  12. Andersson L. Genome-wide association analysis in domestic animals: a powerful approach for genetic dissection of trait loci. Genetica 2009;136:341-9. https://doi.org/10.1007/s10709-008-9312-4
  13. Ramos AM, Crooijmans RP, Affara NA, et al. Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. Plos One 2009;4:e6524. https://doi.org/10.1371/journal.pone.0006524
  14. Fernandez AI, Perez-Montarelo D, Barragan C, et al. Genomewide linkage analysis of QTL for growth and body composition employing the PorcineSNP60 BeadChip. BMC Genet 2012;13:41. https://doi.org/10.1186/1471-2156-13-41
  15. Fontanesi L, Schiavo G, Galimberti G, et al. A genome wide association study for backfat thickness in Italian Large White pigs highlights new regions affecting fat deposition including neuronal genes. BMC Genomics 2012;13:583. https://doi.org/10.1186/1471-2164-13-583
  16. Sahana G, Kadlecova V, Hornshoj H, Nielsen B, Christensen OF. A genome-wide association scan in pig identifies novel regions associated with feed efficiency trait. J Anim Sci 2013;91:1041-50. https://doi.org/10.2527/jas.2012-5643
  17. He Y, Ma J, Zhang F, et al. Multi-breed genome-wide association study reveals heterogeneous loci associated with loin eye area in pigs. J Appl Genet 2016;57:511-8. https://doi.org/10.1007/s13353-016-0351-8
  18. Ding R, Zhuang Z, Qiu Y, et al. A composite strategy of genomewide association study and copy number variation analysis for carcass traits in a Duroc pig population. BMC Genomics 2022;23:590. https://doi.org/10.1186/s12864-022-08804-1
  19. Fan B, Onteru SK, Du ZQ, Garrick DJ, Stalder KJ, Rothschild MF. Genome-wide association study identifies Loci for body composition and structural soundness traits in pigs. Plos One 2011;6:e14726. https://doi.org/10.1371/journal.pone.0014726
  20. Zhuang Z, Li S, Ding R, et al. Meta-analysis of genome-wide association studies for loin muscle area and loin muscle depth in two Duroc pig populations. Plos One 2019;14: e218263. https://doi.org/10.1371/journal.pone.0218263
  21. Ding R, Yang M, Wang X, et al. Genetic architecture of feeding behavior and feed efficiency in a Duroc pig population. Front Genet 2018;9:220. https://doi.org/10.3389/fgene.2018.00220
  22. Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81:559-75. https://doi.org/10.1086/519795
  23. Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat Genet 2012;44:821-4. https://doi.org/10.1038/ng.2310
  24. Matukumalli LK, Lawley CT, Schnabel RD, et al. Development and characterization of a high density SNP genotyping assay for cattle. Plos One 2009;4:e5350. https://doi.org/10.1371/journal.pone.0005350
  25. Li S, Qian J, Yang Y, et al. GWAS identifies novel susceptibility loci on 6p21.32 and 21q21.3 for hepatocellular carcinoma in chronic hepatitis B virus carriers. Plos Genet 2012;8: e1002791. https://doi.org/10.1371/journal.pgen.1002791
  26. Lee JN, Wang Y, Xu YO, Li YC, Tian F, Jiang MF. Characterisation of gene expression related to milk fat synthesis in the mammary tissue of lactating yaks. J Dairy Res 2017;84:283-8. https://doi.org/10.1017/S0022029917000413
  27. Ito K, Murphy D. Application of ggplot2 to pharmacometric graphics. CPT Pharmacometrics Syst Pharmacol 2013;2:e79. https://doi.org/10.1038/psp.2013.56
  28. Wang Y, Ding X, Tan Z, et al. Genome-wide association study of piglet uniformity and farrowing interval. Front Genet 2017;8:194. https://doi.org/10.3389/fgene.2017.00194
  29. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 2011;88:76-82. https://doi.org/10.1016/j.ajhg.2010.11.011
  30. Bu D, Luo H, Huo P, et al. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res 2021;49:W317-25. https://doi.org/10.1093/nar/gkab447
  31. Fonseca PAS, Suarez-Vega A, Marras G, Canovas A. GALLO: An R package for genomic annotation and integration of multiple data sources in livestock for positional candidate loci. Gigascience 2020;9:giaa149. https://doi.org/10.1093/gigascience/giaa149
  32. Xing K, Zhu F, Zhai L, et al. Identification of genes for controlling swine adipose deposition by integrating transcriptome, whole-genome resequencing, and quantitative trait loci data. Sci Rep 2016;6:23219. https://doi.org/10.1038/srep23219
  33. Li J, Peng S, Zhong L, et al. Identification and validation of a regulatory mutation upstream of the BMP2 gene associated with carcass length in pigs. Genet Sel Evol 2021;53:94. https://doi.org/10.1186/s12711-021-00689-0
  34. Sarup P, Jensen J, Ostersen T, Henryon M, Sorensen P. Increased prediction accuracy using a genomic feature model including prior information on quantitative trait locus regions in purebred Danish Duroc pigs. BMC Genet 2016;17:11. https://doi.org/10.1186/s12863-015-0322-9
  35. Zhang X, Lourenco D, Aguilar I, Legarra A, Misztal I. Weighting strategies for single-step genomic BLUP: an iterative approach for accurate calculation of GEBV and GWAS. Front Genet 2016;7:151. https://doi.org/10.3389/fgene.2016.00151
  36. Zhang H, Zhuang Z, Yang M, et al. Genome-wide detection of genetic loci and candidate genes for body conformation traits in Duroc x Landrace x Yorkshire crossbred pigs. Front Genet 2021;12:664343. https://doi.org/10.3389/fgene.2021.664343
  37. Combes S, Louveau I, Bonneau M. Moderate food restriction affects skeletal muscle and liver growth hormone receptors differently in pigs. J Nutr 1997;127:1944-9. https://doi.org/10.1093/jn/127.10.1944
  38. Dettori ML, Pazzola M, Paschino P, Amills M, Vacca GM. Association between the GHR, GHRHR, and IGF1 gene polymorphisms and milk yield and quality traits in Sarda sheep. J Dairy Sci 2018;101:9978-86. https://doi.org/10.3168/jds.2018-14914
  39. Katsumata M, Cattaneo D, White P, Burton KA, Dauncey MJ. Growth hormone receptor gene expression in porcine skeletal and cardiac muscles is selectively regulated by postnatal undernutrition. J Nutr 2000;130:2482-8. https://doi.org/10.1093/jn/130.10.2482
  40. Fukao T, Lopaschuk GD, Mitchell GA. Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukot Essent Fatty Acids 2004;70:243-51. https://doi.org/10.1016/j.plefa.2003.11.001
  41. Li C, Sun D, Zhang S, et al. Genome wide association study identifies 20 novel promising genes associated with milk fatty acid traits in Chinese Holstein. Plos One 2014;9:e96186. https://doi.org/10.1371/journal.pone.0096186
  42. Badoud F, Lam KP, Dibattista A, et al. Serum and adipose tissue amino acid homeostasis in the metabolically healthy obese. J Proteome Res 2014;13:3455-66. https://doi.org/10.1021/pr500416v
  43. Kumar H, Srikanth K, Park W, et al. Transcriptome analysis to identify long non coding RNA (lncRNA) and characterize their functional role in back fat tissue of pig. Gene 2019;703:71-82. https://doi.org/10.1016/j.gene.2019.04.014
  44. Zhou Q, Chen W, Fan Z, et al. Targeting hyperactive TGFBR2 for treating MYOCD deficient lung cancer. Theranostics 2021;11:6592-606. https://doi.org/10.7150/thno.59816
  45. Xu J, Jiao J, Xu W, et al. Mutant p53 promotes cell spreading and migration via ARHGAP44. Sci China Life Sci 2017;60:1019-29. https://doi.org/10.1007/s11427-016-9040-8
  46. Schroeder C, Navid-Hill E, Meiners J, et al. Nuclear ELAC2 overexpression is associated with increased hazard for relapse after radical prostatectomy. Oncotarget 2019;10:4973-86. https://doi.org/10.18632/oncotarget.27132
  47. Liu S, Huang J, Zhang Y, Liu Y, Zuo S, Li R. MAP2K4 interacts with Vimentin to activate the PI3K/AKT pathway and promotes breast cancer pathogenesis. Aging (Albany NY) 2019;11:10697-710. https://doi.org/10.18632/aging.102485
  48. Qie S. The E3 ubiquitin ligase Fbxo4 functions as a tumor suppressor: its biological importance and therapeutic perspectives. Cancers (Basel) 2022;14:2133. https://doi.org/10.3390/cancers14092133
  49. Wang L, Zhou N, Qu J, Jiang M, Zhang X. Identification of an RNA binding protein-related gene signature in hepatocellular carcinoma patients. Mol Med 2020;26:125. https://doi.org/10.1186/s10020-020-00252-5
  50. Li G, Eriani G, Wang ED, Zhou XL. Distinct pathogenic mechanisms of various RARS1 mutations in Pelizaeus- Merzbacher-like disease. Sci China Life Sci 2021;64:1645-60. https://doi.org/10.1007/s11427-020-1838-2
  51. Xu R, Yallowitz A, Qin A, et al. Targeting skeletal endothelium to ameliorate bone loss. Nat Med 2018;24:823-33. https://doi.org/10.1038/s41591-018-0020-z
  52. Wang T, Wang F, Liu T, et al. OPG/RANKL/RANK gene methylation among alcohol-induced femoral head necrosis in northern Chinese men. J Orthop Surg Res 2021;16:223. https://doi.org/10.1186/s13018-021-02356-y
  53. Zhang S, Xie C. The role of OXCT1 in the pathogenesis of cancer as a rate-limiting enzyme of ketone body metabolism. Life Sci 2017;183:110-5. https://doi.org/10.1016/j.lfs.2017.07.003