Acknowledgement
The authors would like to express their gratitude to Dr. A. Bandopadhyay, Senior Consultant, ITRA, Ag&Food, Government of India for perceiving the concept of the research work. The authors are thankful to Dr. Manoranjan Roy, Principal Investigator of All India Coordinated Research Project on Goat Improvement and Assistant Professor, Animal Genetics and Breeding, West Bengal University of Animal and Fishery Sciences, Kolkata- 700037, West Bengal, India for extending necessary supports to collect the data at Rangabelia, Gosaba Block, Sunderbans delta, West Bengal, India. The necessary help and cooperation extended by Mr. Kaushik Mukherjee, Mr. Sanket Dan, Mr. Kunal Roy, Mr. Subhranil Mustafi, Mr. Subhojit Roy and Mr. Pritam Ghosh, Department of Information Technology, Kalyani Government Engineering College, Kalyani, Nadia- 741235, West Bengal, India are duly acknowledged.
References
- Bowling MB, Pendell DL, Morris DL, et al. Identification and traceability of cattle in selected countries outside of North America. Pro Anim Sci 2008;24:287-94. https://doi.org/10.15232/S1080-7446(15)30858-5
- Edwards DS, Johnston AM, Pfeiffer DU. A comparison of commonly used ear tags on the ear damage of sheep. Anim Welf 2001;10:141-51. https://doi.org/10.1017/S0962728600023812
- Gosalvez LF, Santamarina C, Averos X, Hernandez-Jover M, Caja G, Babot D. Traceability of extensively produced Iberian pigs using visual and electronic identification devices from farm to slaughter. J Anim Sci 2007;85:2746-52. https://doi.org/10.2527/jas.2007-0173
- Regattieri A, Gamber M, Manzini R. Traceability of food products: general framework and experimental evidence. J Food Eng 2007;81:347-56. https://doi.org/10.1016/j.jfoodeng.2006.10.032
- Sahin E, Dallery Y, Gershwin S. Performance evaluation of a traceability system. IEEE T Syst Man Cy B 2002;3:210-8.
- Loftus R. Traceability of biotech-derived animals: application of DNA technology. Rev Sci Tech Off Int Epiz 2005;24:231-42. https://doi.org/10.20506/rst.24.1.1563
- Allen A, Golden B, Taylor M, Patterson D, Henriksen D, Skuce R. Evaluation of retinal imaging technology for the biometric identification of bovine animals in Northern Ireland. Livest Sci 2008;116:42-52. https://doi.org/10.1016/j.livsci.2007.08.018
- Barry B, Gonzales-Barron UA, Mcdonnell K, Butler F, Ward S. Using muzzle pattern recognition as a biometric approach for cattle identification. Trans ASABE 2007;50:1073-80. https://doi.org/10.13031/2013.23121
- Corkery GP, Gonzales-Barron UA, Butler F, McDennell K, Ward S. A preliminary investigation on face recognition as a biometric identifier of sheep. Trans ASABE 2007;50:313-20. https://doi.org/10.13031/2013.22395
- Daugman J. How iris recognition works. In: Proceedings of International Conference on Image Processing 1; 2002, Sept 22-5; Rochester, NY, USA.
- Musgrave C, Cambier JL. System andmethod of animal identification and animal transaction authorization using iris pattern. Moorestown, NJ, USA: Iridian Technologies, Inc.; 2002. US Patent 6424727.
- Daugman J. New methods in iris recognition. IEEE T Syst Man Cy B 2007;37:1167-75. https://doi.org/10.1109/TSMCB.2007.903540
- Feng X, Ding X, Wu Y, Wang PSP. Classifier combination and its application in iris recognition. ntern J Pattern Recognit Artif Intell 2008;22:617-38. https://doi.org/10.1142/S0218001408006314
- Zhang M, Zhao L,. An iris localization algorithm based on geometrical features of cow eyes. Proc. SPIE 7495, MIPPR 2009: Automatic Target Recognition and Image Analysis, 749517 (30 October 2009). https://doi.org/10.1117/12.832494
- Lu Y, He X, Wen Y, Wang PSP. A new cow identification system based on iris analysis and recognition. Int J Biom 2014;6:18-32. https://doi.org/10.1504/IJBM.2014.059639
- De P, Ghoshal D. Recognition of non circular iris pattern of the goat by structural, statistical and fourier descriptors. Procedia Comput Sci 2016;89:845-9. https://doi.org/10.1016/j.procs.2016.06.070
- Roy S, Dan S, Mukherjee K, et al. Black Bengal Goat Identification using Iris Images. Pro Int Con Front Com Sys 2020: 213-24. In: Bhattacharjee D, Kole DK, Dey N, Basu S, Plewczynski D, editors. Proceedings of International Conference on Frontiers in Computing and Systems. Advances in Intelligent Systems and Computing; 2022. vol 1255. Springer, Singapore. https://doi.org/10.1007/978-981-15-7834-2_20
- Sundararajan K, Woodard DL. Deep learning for biometrics: a survey. ACM Comput Surv (CSUR) 2019;51:1-34. https://doi.org/10.1145/3190618
- Minaee S, Abdolrashidi A. Deepiris: Iris recognition using a deep learning approach. arXiv 2019;1907.09380. https://doi.org/10.48550/arXiv.1907.09380
- Nguyen K, Fookes C, Ross A, Sridharan S. Iris recognition with off-the-shelf CNN features: A deep learning perspective. IEEE Access 2017;6:18848-55. https://doi.org/10.1109/ACCESS.2017.2784352
- Nielsen MA. Neural networks and deep learning. Vol 25, San Francisco, CA, USA: Determination Press; 2015.
- Apostolidis K, Amanatidis P, Papakostas G. Performance evaluation of convolutional neural networks for gait recognition. In 24th Pan-Hellenic Conference on Informatics; 2020. pp. 61-3.
- Hwooi SKW, Loo CK, Sabri AQM. Emotion differentiation based on arousal intensity estimation from facial expressions. In: Information science and applications; Singapore, Springer; 2020. pp. 249-57.
- Masek L. Recognition of human iris patterns for biometric identification [master's thesis]. Crawley, WA, Australia: School of Computer Science and Software Engineering, the University of Western Australia; 2003.
- Sant'Ana DA, Pache MCB, Martins J, et al. Computer vision system for superpixel classification and segmentation of sheep. Ecol Inform 2022;68:101551. https://doi.org/10.1016/j.ecoinf.2021.101551
- Pu J, Yu C, Chen X, Zhang Y, Yang X, Li J. Research on Chengdu Ma goat recognition based on computer vison. Animals 2022; 12:1746. https://doi.org/10.3390/ani12141746
- Wildes RP. Iris recognition: an emerging biometric technology. Pro IEEE 1997;85:1348-63. https://doi.org/10.1109/5.628669
- Prajwala NB, Pushpa NB. Matching of iris pattern using image processing. Int J Recent Technol Eng 2019;8(2S11):21-3. https://doi.org/10.35940/ijrte.B1004.0982S1119
- Mandal SN, Ghosh P, Mukherjee K, et al. InceptGI: a convnet-based classification model for identifying goat breeds in India. J Inst Eng India Ser B 2020;101:573-84. https://doi.org/10.1007/s40031-020-00471-8
- Bowyer KW, Hollingsworth K, Flynn PJ. Image understanding for iris biometrics: a survey. Comput Vis Image Underst 2008; 110:281-307. https://doi.org/10.1016/j.cviu.2007.08.005
- Benalcazar DP, Zambrano JE, Bastias D, Perez CA, Bowyer KW. A 3D iris scanner from a single image using convolutional neural networks. IEEE Access 2020;8:98584-99. https://doi.org/10.1109/ACCESS.2020.2996563
- Vyas R, Kanumuri T, Sheoran G, Dubey P. Smartphone based iris recognition through optimized textural representation. Multimed Tools Appl 2020;79:14127-46. https://doi.org/10.1007/s11042-019-08598-7
- Hamd MH, Ahmed SK. Biometric system design for iris recognition using intelligent algorithms. Inter J Educ Mod Comp Sci 2018;10:9-16. https://doi.org/10.5815/ijmecs.2018.03.02
- Jayanthi J, Lydia EL, Krishnaraj N, Jayasankar T, Babu RL, Suji RA. An effective deep learning features based integrated framework for iris detection and recognition. J Ambient Intell Humaniz Comput 2020;12:3271-81. https://doi.org/10.1007/s12652-020-02172-y
- Daugman JG. High confidence visual recognition of persons by a test of statistical independence. IEEE Trans Pattern Anal Mach Intell 1993;15:1148-61. https://doi.org/10.1109/34.244676