DOI QR코드

DOI QR Code

Effect of microbial biopolymers on the sedimentation behavior of kaolinite

  • Yeong-Man Kwon (Department of Civil and Environmental Engineering, Northwestern University) ;
  • Seok-Jun Kang (Department of Civil and Environmental Engineering, KAIST) ;
  • Gye-Chun Cho (Department of Civil and Environmental Engineering, KAIST) ;
  • Ilhan Chang (Department of Civil Systems Engineering, Ajou University)
  • Received : 2022.12.24
  • Accepted : 2023.03.21
  • Published : 2023.04.25

Abstract

Clay sedimentation has been widely analyzed for its application in a variety of geotechnical constructions such as mine tailing, artificial islands, dredging, and reclamation. Chemical flocculants such as aluminum sulfate (Al2(SO4)3), ferric chloride (FeCl3), and ferric sulfate (Fe(SO4)3), have been adopted to accelerate the settling behaviors of clays. As an alternative clay flocculant with natural origin, this study investigated the settling of xanthan gum-treated kaolinite suspension in deionized water. The sedimentation of kaolinite in solutions of xanthan gum biopolymer (0%, 0.1%, 0.5%, 1.0%, and 2.0% in a clay mass) was measured until the sediment height was stabilized. Kaolinite was aggregated by xanthan gum via a direct electrical interaction between the negatively charged xanthan gum molecules and positively charged edge surface and via hydrogen bonding with kaolinite particles. The results revealed that the xanthan gum initially bound kaolinite aggregates, thereby forming larger floc sizes. Owing to their greater floc size, the aggregated kaolinite flocs induced by xanthan gum settled faster than the untreated kaolinite. Additionally, X-ray computed tomography images collected at various depths from the bottom demonstrated that the xanthan gum-induced aggregation resulted in denser sediment deposition. The findings of this study could inspire further efforts to accelerate the settling of kaolinite clays by adding xanthan gum.

Keywords

Acknowledgement

This research was financially supported by the Ministry of Oceans and Fisheries (MOF) of the Korean Government (Project No. 20220364), and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C2091517).

References

  1. Angove, M.J., Johnson, B.B. and Wells, J.D. (1997), "Adsorption of cadmium(ii) on kaolinite", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 126(2), 137-147. https://doi.org/10.1016/S0927-7757(96)03990-8.
  2. ASTM (2007), D4318-05: Standard test methods for liquid limit, plastic limt, and plasticity index of soils, ASTM International, West Conshohocken.
  3. ASTM (2012), D698-12e2: Standard test methods for laboratory compaction characteristics of soil using standard effort (12 400 ft-lbf/ft3 (600 kn-m/m3)), ASTM International, West Conshohocken, PA.
  4. ASTM (2014), D854-14: Standard test methods for specific gravity of soil solids by water pycnometer, ASTM International, West Conshohocken, PA.
  5. ASTM (2017), D2487-17: Standard practice for classification of soils for engineering purposes (unified soil classification system), ASTM International, West Conshohocken.
  6. Awad, M.E., Lopez-Galindo, A., Setti, M., El-Rahmany, M.M. and Iborra, C.V. (2017), "Kaolinite in pharmaceutics and biomedicine", Int. J. Pharmaceutics, 533(1), 34-48. https://doi.org/10.1016/j.ijpharm.2017.09.056.
  7. Berlamont, J., Ockenden, M., Toorman, E. and Winterwerp, J. (1993), "The characterisation of cohesive sediment properties", Coast. Eng., 21(1), 105-128. https://doi.org/10.1016/0378-3839(93)90047-C.
  8. Cadmus, M.C., Jackson, L.K., Burton, K.A., Plattner, R.D. and Slodki, M.E. (1982), "Biodegradation of xanthan gum by bacillus sp", Appl. Environ. Microb., 44(1), 5-11. https://doi.org/10.1128/aem.44.1.5-11.1982.
  9. Cao, Z., Wang, Q. and Cheng, H. (2021), "Recent advances in kaolinite-based material for photocatalysts", Chinese Chem. Lett., 32(9), 2617-2628. https://doi.org/10.1016/j.cclet.2021.01.009.
  10. Chamley, H. (2013), Clay sedimentology, Springer, Berlin, Heidelberg
  11. Chang, I. and Cho, G.C. (2012), "Strengthening of korean residual soil with β-1,3/1,6-glucan biopolymer", Constr. Build. Mater., 30 30-35. https://doi.org/10.1016/j.conbuildmat.2011.11.030.
  12. Chang, I. and Cho, G.C. (2019), "Shear strength behavior and parameters of microbial gellan gum-treated soils: From sand to clay", Acta Geotechnica, 14(2), 361-375. https://doi.org/10.1007/s11440-018-0641-x.
  13. Chang, I., Im, J., Prasidhi, A.K. and Cho, G.C. (2015), "Effects of xanthan gum biopolymer on soil strengthening", Constr. Build. Mater., 74, 65-72, https://doi.org/10.1016/j.conbuildmat.2014.10.026.
  14. Chang, I., Kwon, Y.M. and Cho, G.C. (2021), "Effect of pore-fluid chemistry on the undrained shear strength of xanthan gum biopolymer-treated clays", J. Geotech. Geoenviron. Eng., 147(11), 06021013. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002652.
  15. Chang, I., Kwon, Y.M., Im, J. and Cho, G.C. (2019), "Soil consistency and interparticle characteristics of xanthan gum biopolymer-containing soils with pore-fluid variation", Can. Geotech. J., 56(8), 1206-1213. https://doi.org/10.1139/cgj-2018-0254.
  16. Chang, I., Lee, M., Tran, A.T.P., Lee, S., Kwon, Y.M., Im, J. and Cho, G.C. (2020), "Review on biopolymer-based soil treatment (bpst) technology in geotechnical engineering practices", Transport. Geotech., 24, 100385. https://doi.org/10.1016/j.trgeo.2020.100385.
  17. Chang, I., Prasidhi, A.K., Im, J. and Cho, G.C. (2015), "Soil strengthening using thermo-gelation biopolymers", Constr. Build. Mater., 77, 430-438. http://dx.doi.org/10.1016/j.conbuildmat.2014.12.116.
  18. Cheng, N.S. (1997), "Effect of concentration on settling velocity of sediment particles", J. Hydraulic Eng., 123(8), 728-731. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:8(728).
  19. Dehghan, H., Tabarsa, A., Latifi, N. and Bagheri, Y. (2019), "Use of xanthan and guar gums in soil strengthening", Clean Technol. Environ. Policy, 21(1), 155-165. https://doi.org/10.1007/s10098-018-1625-0.
  20. Du, J., Morris, G., Pushkarova, R.A. and St. C. Smart, R. (2010), "Effect of surface structure of kaolinite on aggregation, settling rate, and bed density", Langmuir, 26(16), 13227-13235. https://doi.org/10.1021/la100088n.
  21. Duran, J.D.G., Ramos-Tejada, M.M., Arroyo, F.J. and Gonzalez-Caballero, F. (2000), "Rheological and electrokinetic properties of sodium montmorillonite suspensions: I. Rheological properties and interparticle energy of interaction", J. Colloid Interface Sci., 229(1), 107-117. https://doi.org/10.1006/jcis.2000.6956.
  22. Einstein, A. (1905), "On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat (english translation, 1956)", Investigations on the theory of the Brownian movement.
  23. Elimelech, M., Gregory, J. and Jia, X. (2013), Particle deposition and aggregation: Measurement, modelling and simulation, Butterworth-Heinemann.
  24. Fam, M. and Santamarina, J.C. (1997), "A study of consolidation using mechanical and electromagnetic waves", Geotechnique, 47(2), 203-219. https://doi.org/10.1680/geot.1997.47.2.203
  25. Fennessy, M., Dyer, K., Huntley, D. and Bale, A. (1997), "Estimation of settling flux spectra in estuaries using inssev", Cohesive Sediments, 87-104.
  26. Ferhat, M., Kadouche, S., Drouiche, N., Messaoudi, K., Messaoudi, B. and Lounici, H. (2016), "Competitive adsorption of toxic metals on bentonite and use of chitosan as flocculent coagulant to speed up the settling of generated clay suspensions", Chemosphere, 165, 87-93. https://doi.org/10.1016/j.chemosphere.2016.08.125.
  27. Garcia-Ochoa, F., Santos, V., Casas, J. and Gomez, E. (2000), "Xanthan gum: Production, recovery, and properties", Biotechnol. Adv., 18(7), 549-579. https://doi.org/10.1016/S0734-9750(00)00050-1
  28. Heller, H. and Keren, R. (2003), "Anionic polyacrylamide polymer adsorption by pyrophyllite and montmorillonite", Clays Clay Miner.. 51(3), 334-339. https://doi.org/10.1346/CCMN.2003.0510310.
  29. Iijima, M., Shinozaki, M., Hatakeyama, T., Takahashi, M. and Hatakeyama, H. (2007), "Afm studies on gelation mechanism of xanthan gum hydrogels", Carbohydrate Polymers. 68(4), 701-707. https://doi.org/10.1016/j.carbpol.2006.08.004.
  30. Imai, G. (1980), "Settling behavior of clay suspension", Soils Found., 20(2), 61-77. https://doi.org/10.3208/sandf1972.20.2_61.
  31. Jang, J., Cao, S.C., Stern, L.A., Jung, J. and Waite, W.F. (2018), "Impact of pore fluid chemistry on fine-grained sediment fabric and compressibility", J. Geophys. Res.: Solid Earth, 123(7), 5495-5514. https://doi.org/10.1029/2018JB015872.
  32. Kang, X., Xia, Z., Chen, R., Sun, H. and Yang, W. (2019), "Effects of inorganic ions, organic polymers, and fly ashes on the sedimentation characteristics of kaolinite suspensions", Appl. Clay Sci., 181, 105220. https://doi.org/10.1016/j.clay.2019.105220.
  33. Katzbauer, B. (1998), "Properties and applications of xanthan gum", Polymer Degradation Stability, 59(1), 81-84. https://doi.org/10.1016/S0141-3910(97)00180-8.
  34. Kaya, A., Oren, A.H. and Yukselen, Y. (2006), "Settling of kaolinite in different aqueous environment", Mar. Georesour. Geotechnol., 24(3), 203-218. https://doi.org/10.1080/10641190600788429.
  35. Keller, W.D. and Matlack, K. (1990), "The ph of clay suspensions in the field and laboratory, and methods of measurement of their ph", Appl. Clay Sci., 5(2), 123-133. https://doi.org/10.1016/0169-1317(90)90018-K.
  36. Khan, S.H.A. and Yusuf, M. (2018), "Studies on rheological behavior of xanthan gum solutions in presence of additives", Pet Petrochem. Eng. J., 2(5), 000165.
  37. Kim, M., Song, I., Kim, M., Kim, S., Kim, Y., Choi, Y. and Seo, M. (2015), "Effect of polyacrylamide application on water and nutrient movements in soils", J. Agricultural Chem. Environ., 4(3), 76. https://doi.org/10.4236/jacen.2015.43008.
  38. Kinnunen, P., Ismailov, A., Solismaa, S., Sreenivasan, H., Raisanen, M.L., Levanen, E. and Illikainen, M. (2018), "Recycling mine tailings in chemically bonded ceramics - a review", J. Clean. Prod., 174, 634-649. https://doi.org/10.1016/j.jclepro.2017.10.280.
  39. Kotylar, L.S., Sparks, B.D. and Schutte, R. (1996), "Effect of salt on the flocculation behavior of nano particles in oil sands fine tailings", Clays Clay Min., 44(1), 121-131. https://doi.org/10.1346/CCMN.1996.0440111.
  40. Kwon, Y.-M., Chang, I. and Cho, G.-C. (2023), "Consolidation and swelling behavior of kaolinite clay containing xanthan gum biopolymer", Acta Geotechnica, https://doi.org/10.1007/s11440-023-01794-8.
  41. Kwon, Y.-M., Chang, I., Lee, M. and Cho, G.C. (2019), "Geotechnical engineering behaviors of biopolymer-treated soft marine soil", Geomech. Eng., 17(5), 453-464. https://doi.org/10.12989/gae.2019.17.5.453.
  42. Kwon, Y.M., Cho, G.C., Chung, M.K. and Chang, I. (2021), "Surface erosion behavior of biopolymer-treated river sand", Geomech. Eng., 25(1), 49-58. https://doi.org/10.12989/gae.2021.25.1.049.
  43. Kwon, Y.M., Cho, G.C., Chung, M.K. and Chang, I. (2021), "Surface erosion behavior of biopolymer-treated river sand", Geomech. Eng., 25(1), 49-58. https://doi.org/10.12989/gae.2021.25.1.049.
  44. Kwon, Y.M., Ham, S.M., Kwon, T.H., Cho, G.C. and Chang, I. (2020), "Surface-erosion behaviour of biopolymer-treated soils assessed by efa", Geotechnique Lett., 10(2), 1-7. https://doi.org/10.1680/jgele.19.00106.
  45. Kwon, Y.M., Im, J., Chang, I. and Cho, G.C. (2017), "Ε-polylysine biopolymer for coagulation of clay suspensions", Geomech. Eng., 12(5), 753-770. http://doi.org/10.12989/gae.2017.12.5.753.
  46. Kynch, G.J. (1952), "A theory of sedimentation", Transactions of the Faraday Soc., 48, 166-176. https://doi.org/10.1039/TF9524800166.
  47. Lagaly, G. and Ziesmer, S. (2003), "Colloid chemistry of clay minerals: The coagulation of montmorillonite dispersions", Adv. Colloid Interface Sci., 100-102, 105-128. https://doi.org/10.1016/S0001-8686(02)00064-7.
  48. Lamb, M.P., de Leeuw, J., Fischer, W.W., Moodie, A.J., Venditti, J.G., Nittrouer, J.A., Haught, D. and Parker, G. (2020), "Mud in rivers transported as flocculated and suspended bed material", Nature Geosci., 13(8), 566-570. https://doi.org/10.1038/s41561-020-0602-5.
  49. Latifi, N., Horpibulsuk, S., Meehan, C.L., Majid, M.Z.A. and Rashid, A.S.A. (2016), "Xanthan gum biopolymer: An ecofriendly additive for stabilization of tropical organic peat", Environ. Earth Sci., 75(9), 825.
  50. Lee, L.T., Rahbari, R., Lecourtier, J. and Chauveteau, G. (1991), "Adsorption of polyacrylamides on the different faces of kaolinites", J. Colloid Interface Sci., 147(2), 351-357. https://doi.org/10.1016/0021-9797(91)90167-7.
  51. Lee, M., Kwon, Y.M., Park, D.Y., Chang, I. and Cho, G.C. (2022), "Durability and strength degradation of xanthan gum based biopolymer treated soil subjected to severe weathering cycles", Scientific Reports, 12(1), 19453. https://doi.org/10.1038/s41598-022-23823-4.
  52. Lee, S.L., Karunaratne, G.P., Yong, K.Y. and Ganeshan, V. (1987), "Layered clay-sand scheme of land reclamation", J. Geotech. Eng., 113(9), 984-995. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:9(984).
  53. Loch, R.J. (2001), "Settling velocity - a new approach to assessing soil and sediment properties", Comput. Electron. Agricult., 31(3), 305-316. https://doi.org/10.1016/S0168-1699(00)00189-7.
  54. McFarlane, A.J., Bremmell, K.E. and Addai-Mensah, J. (2005), "Optimising the dewatering behaviour of clay tailings through interfacial chemistry, orthokinetic flocculation and controlled shear", Powder Technol., 160(1), 27-34. https://doi.org/10.1016/j.powtec.2005.04.046.
  55. Mendes, A.C., Baran, E.T., Pereira, R.C., Azevedo, H.S. and Reis, R.L. (2012), "Encapsulation and survival of a chondrocyte cell line within xanthan gum derivative", Macromol. Biosci., 12(3), 350-359. https://doi.org/10.1002/mabi.201100304.
  56. Missana, T. and Adell, A. (2000), "On the applicability of dlvo theory to the prediction of clay colloids stability", J. Colloid Interface Sci., 230(1), 150-156. https://doi.org/10.1006/jcis.2000.7003.
  57. Mohan, K.K. and Fogler, H.S. (1997), "Effect of ph and layer charge on formation damage in porous media containing swelling clays", Langmuir, 13(10), 2863-2872. https://doi.org/10.1021/la960868w.
  58. Mortensen, J.L. (1957), "Adsorption of hydrolyzed polyacrylonitrile on kaolinite: I. Effect of exchange cation and anion", Soil Sci. Soc. Am. J., 21(4), 385-388. https://doi.org/10.2136/sssaj1957.03615995002100040008x.
  59. Mpofu, P., Addai-Mensah, J. and Ralston, J. (2003), "Influence of hydrolyzable metal ions on the interfacial chemistry, particle interactions, and dewatering behavior of kaolinite dispersions", J. Colloid Interface Sci., 261(2), 349-359. https://doi.org/10.1016/S0021-9797(03)00113-9.
  60. Nabzar, L., Pefferkorn, E. and Varoqui, R. (1984), "Polyacrylamide-sodium kaolinite interactions: Flocculation behavior of polymer clay suspensions", J. Colloid Interface Sci., 102(2), 380-388. https://doi.org/10.1016/0021-9797(84)90240-6.
  61. Nasser, M.S. and James, A.E. (2006), "Settling and sediment bed behaviour of kaolinite in aqueous media", Sep. Purif. Technol., 51(1), 10-17. https://doi.org/10.1016/j.seppur.2005.12.017.
  62. Nugent, R.A., Zhang, G. and Gambrell, R.P. (2009), "Effect of exopolymers on the liquid limit of clays and its engineering implications", Transport. Res. Record, 2101(1), 34-43. https://doi.org/10.3141/2101-05.
  63. O'Brien, N.R. (1971), "Fabric of kaolinite and illite floccules", Clay. Clay Miner., 19(6), 353-359. https://doi.org/10.1346/CCMN.1971.0190603.
  64. Palomino, A.M. and Santamarina, J.C. (2005), "Fabric map for kaolinite: Effects of ph and ionic concentration on behavior", Clay. Clay Miner., 53(3), 211-223. https://doi.org/10.1346/ccmn.2005.0530302.
  65. Priya, K.L., Jegathambal, P. and James, E.J. (2015), "On the factors affecting the settling velocity of fine suspended sediments in a shallow estuary", J. Oceanogr., 71(2), 163-175. https://doi.org/10.1007/s10872-014-0269-x.
  66. Revelo, C.F. and Colorado, H.A. (2018), "3d printing of kaolinite clay ceramics using the direct ink writing (diw) technique", Ceramics Int., 44(5), 5673-5682. https://doi.org/10.1016/j.ceramint.2017.12.219.
  67. Ruhsing Pan, J., Huang, C., Chen, S. and Chung, Y.-C. (1999), "Evaluation of a modified chitosan biopolymer for coagulation of colloidal particles", Colloid. Surface. A: Physicochem. Eng. Aspects, 147(3), 359-364. http://doi.org/10.1016/S0927-7757(98)00588-3.
  68. Santamarina, J.C., Klein, K.A., Wang, Y.H. and Prencke, E. (2002), "Specific surface: Determination and relevance", Can. Geotech. J., 39(1), 233-241. https://doi.org/10.1139/t01-077.
  69. Seo, S., Lee, M., Im, J., Kwon, Y.M., Chung, M.K., Cho, G.C. and Chang, I. (2021), "Site application of biopolymer-based soil treatment (bpst) for slope surface protection: In-situ wet-spraying method and strengthening effect verification", Constr. Build. Mater., 307, 124983. https://doi.org/10.1016/j.conbuildmat.2021.124983.
  70. Seybold, C. (1994), "Polyacrylamide review: Soil conditioning and environmental fate", Commun. Soil Sci. Plant Anal., 25(11-12), 2171-2185. https://doi.org/10.1080/00103629409369180
  71. Shaikh, S.M.R., Nasser, M.S., Hussein, I., Benamor, A., Onaizi, S.A. and Qiblawey, H. (2017), "Influence of polyelectrolytes and other polymer complexes on the flocculation and rheological behaviors of clay minerals: A comprehensive review", Separat. Purification Technol., 187, 137-161. https://doi.org/10.1016/j.seppur.2017.06.050.
  72. Sridharan, A. and Prakash, K. (1999), "Influence of clay mineralogy and pore-medium chemistry on clay sediment formation", Can. Geotech. J., 36(5), 961-966. https://doi.org/10.1139/t99-045.
  73. Stokes, G.G. (1851), "On the effect of the internal friction of fluids on the motion of pendulums", Transactions of the Cambridge Philosophical Society.
  74. Sujatha, E.R., Atchaya, S., Sivasaran, A. and Keerdthe, R.S. (2020), "Enhancing the geotechnical properties of soil using xanthan gum-an eco-friendly alternative to traditional stabilizers", Bulletin of Engineering Geology and the Environment. https://doi.org/10.1007/s10064-020-02010-7.
  75. Tan, X., Hu, L., Reed, A.H., Furukawa, Y. and Zhang, G. (2014), "Flocculation and particle size analysis of expansive clay sediments affected by biological, chemical, and hydrodynamic factors", Ocean Dynam., 64(1), 143-157. https://doi.org/10.1007/s10236-013-0664-7.
  76. Theng, B.K.G. (2012), Formation and properties of clay-polymer complexes, Elsevier
  77. Theodoro, J.D.P., Lenz, G.F., Zara, R.F. and Bergamasco, R. (2013), "Coagulants and natural polymers: Perspectives for the treatment of water", Plast. Polymer Technol., 2(3), 55-62.
  78. Tombacz, E. and Szekeres, M. (2006), "Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite", Appl. Clay Sci., 34(1), 105-124. https://doi.org/10.1016/j.clay.2006.05.009.
  79. Toorman, E.A. (1996), "Sedimentation and self-weight consolidation: General unifying theory", Geotechnique, 46(1), 103-113. https://doi.org/10.1680/geot.1996.46.1.103.
  80. van Oss, C.J., Giese, R.F. and Costanzo, P.M. (1990), "Dlvo and non-dlvo interactions in hectorite", Clay. Clay Miner., 38(2), 151-159. https://doi.org/10.1346/CCMN.1990.0380206.
  81. Verwey, E.J.W. (1947), "Theory of the stability of lyophobic colloids", J. Phys. Colloid Chem., 51(3), 631-636. https://doi.org/10.1021/j150453a001.
  82. Walter, R.H. and Jacon, S.A. (1994), "Molecular weight approximations of ionic polysaccharides by ph determinations", Food Hydrocolloids, 8(5), 469-480. https://doi.org/10.1016/S0268-005X(09)80089-1.
  83. Wang, Y.H. and Siu, W.K. (2006), "Structure characteristics and mechanical properties of kaolinite soils. I. Surface charges and structural characterizations", Can. Geotech. J., 43(6), 587-600. https://doi.org/10.1139/t06-026.
  84. Watabe, Y. and Saitoh, K. (2015), "Importance of sedimentation process for formation of microfabric in clay deposit", Soils Found., 55(2), 276-283. https://doi.org/10.1016/j.sandf.2015.02.004.
  85. Whitcomb, P.J. and Macosko, C.W. (1978), "Rheology of xanthan gum", J. Rheology, 22(5), 493-505. https://doi.org/10.1122/1.549485.
  86. White, M. (1975), Settling of activated sludge. , Water Research Centre, , England.
  87. White, M. (1976), "Design and control of secondary settlement tanks", Water Pollution Control, 75(4), 459.
  88. Winterwerp, J.C. (1998), "A simple model for turbulence induced flocculation of cohesive sediment", J. Hydraulic Res., 36(3), 309-326. https://doi.org/10.1080/00221689809498621.
  89. Zbik, M.S., Smart, R.S.C. and Morris, G.E. (2008), "Kaolinite flocculation structure", J. Colloid Interface Sci., 328(1), 73-80. https://doi.org/10.1016/j.jcis.2008.08.063.
  90. Zhou, Y., Gan, Y., Wanless, E.J., Jameson, G.J. and Franks, G.V. (2008), "Interaction forces between silica surfaces in aqueous solutions of cationic polymeric flocculants: Effect of polymer charge", Langmuir, 24(19), 10920-10928. https://doi.org/10.1021/la801109n.
  91. Zhu, P., Wang, L.Y., Hong, D., Qian, G.R. and Zhou, M. (2012), "A study of making synthetic oxy-fluoride construction material using waste serpentine and kaolin mining tailings", Int. J. Mineral Process., 104-105, 31-36. https://doi.org/10.1016/j.minpro.2011.12.003.